52 research outputs found
MR-guided adaptive stereotactic body radiotherapy (SBRT) of primary tumor for pain control in metastatic pancreatic ductal adenocarcinoma (mPDAC): an open randomized, multicentric, parallel group clinical trial (MASPAC)
BACKGROUND
Pain symptoms in the upper abdomen and back are prevalent in 80% of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC), where the current standard treatment is a systemic therapy consisting of at least doublet-chemotherapy for fit patients. Palliative low-dose radiotherapy is a well-established local treatment option but there is some evidence for a better and longer pain response after a dose-intensified radiotherapy of the primary pancreatic cancer (pPCa). Stereotactic body radiation therapy (SBRT) can deliver high radiation doses in few fractions, therefore reducing chemotherapy-free intervals. However, prospective data on pain control after SBRT of pPCa is very limited. Therefore, we aim to investigate the impact of SBRT on pain control in patients with mPDAC in a prospective trial.
METHODS
This is a prospective, double-arm, randomized controlled, international multicenter study testing the added benefit of MR-guided adaptive SBRT of the pPca embedded between standard of care-chemotherapy (SoC-CT) cycles for pain control and prevention of pain in patients with mPDAC. 92 patients with histologically proven mPDAC and at least stable disease after initial 8 weeks of SoC-CT will be eligible for the trial and 1:1 randomized in 3 centers in Germany and Switzerland to either experimental arm A, receiving MR-guided SBRT of the pPCa with 5 × 6.6 Gy at 80% isodose with continuation of SoC-CT thereafter, or control arm B, continuing SoC-CT without SBRT. Daily MR-guided plan adaptation intents to achieve good target coverage, while simultaneously minimizing dose to organs at risk. Patients will be followed up for minimum 6 and maximum of 18 months. The primary endpoint of the study is the "mean cumulative pain index" rated every 4 weeks until death or end of study using numeric rating scale.
DISCUSSION
An adequate long-term control of pain symptoms in patients with mPDAC is an unmet clinical need. Despite improvements in systemic treatment, local complications due to pPCa remain a clinical challenge. We hypothesize that patients with mPDAC will benefit from a local treatment of the pPCa by MR-guided SBRT in terms of a durable pain control with a simultaneously favorable safe toxicity profile translating into an improvement of quality-of-life.
TRIAL REGISTRATION
German Registry for Clinical Trials (DRKS): DRKS00025801. Meanwhile the study is also registered at ClinicalTrials.gov with the Identifier: NCT05114213
ROS1 genomic rearrangements are rare actionable drivers in microsatellite stable colorectal cancer
c-Ros oncogene 1, receptor tyrosine kinase (ROS1) genomic rearrangements have been reported previously in rare cases of colorectal cancer (CRC), yet little is known about the frequency, molecular characteristics, and therapeutic vulnerabilities of ROS1-driven CRC. We analyzed a clinical dataset of 40 589 patients with CRC for ROS1 genomic rearrangements and their associated genomic characteristics (Foundation Medicine, Inc [FMI]). We moreover report the disease course and treatment response of an index patient with ROS1-rearranged metastatic CRC. ROS1 genomic rearrangements were identified in 34 (0.08%) CRC samples. GOPC-ROS1 was the most common ROS1 fusion identified (11 samples), followed by TTC28-ROS1 (3 samples). Four novel 5' gene partners of ROS1 were identified (MCM9, SRPK1, EPHA6, P4HA1). Contrary to previous reports on fusion-positive CRC, ROS1-rearrangements were found exclusively in microsatellite stable (MSS) CRCs. KRAS mutations were significantly less abundant in ROS1-rearranged vs ROS1 wild type cases. The index patient presented with chemotherapy-refractory metastatic right-sided colon cancer harboring GOPC-ROS1. Molecularly targeted treatment with crizotinib induced a rapid and sustained partial response. After 15 months on crizotinib disseminated tumor progression occurred and KRAS Q61H emerged in tissue and liquid biopsies. ROS1 rearrangements define a small, yet therapeutically actionable molecular subgroup of MSS CRC. In summary, the high prevalence of GOPC-ROS1 and noncanonical ROS1 fusions pose diagnostic challenges. We advocate NGS-based comprehensive molecular profiling of MSS CRCs that are wild type for RAS and BRAF and patient enrollment in precision trials.
Keywords: ROS1 rearrangement; acquired resistance; colorectal cancer; crizotinib; molecular subgroups; precision treatmen
ROS1 genomic rearrangements are rare actionable drivers in microsatellite stable colorectal cancer.
c-Ros oncogene 1, receptor tyrosine kinase (ROS1) genomic rearrangements have been reported previously in rare cases of colorectal cancer (CRC), yet little is known about the frequency, molecular characteristics, and therapeutic vulnerabilities of ROS1-driven CRC. We analyzed a clinical dataset of 40 589 patients with CRC for ROS1 genomic rearrangements and their associated genomic characteristics (Foundation Medicine, Inc [FMI]). We moreover report the disease course and treatment response of an index patient with ROS1-rearranged metastatic CRC. ROS1 genomic rearrangements were identified in 34 (0.08%) CRC samples. GOPC-ROS1 was the most common ROS1 fusion identified (11 samples), followed by TTC28-ROS1 (3 samples). Four novel 5' gene partners of ROS1 were identified (MCM9, SRPK1, EPHA6, P4HA1). Contrary to previous reports on fusion-positive CRC, ROS1-rearrangements were found exclusively in microsatellite stable (MSS) CRCs. KRAS mutations were significantly less abundant in ROS1-rearranged vs ROS1 wild type cases. The index patient presented with chemotherapy-refractory metastatic right-sided colon cancer harboring GOPC-ROS1. Molecularly targeted treatment with crizotinib induced a rapid and sustained partial response. After 15 months on crizotinib disseminated tumor progression occurred and KRAS Q61H emerged in tissue and liquid biopsies. ROS1 rearrangements define a small, yet therapeutically actionable molecular subgroup of MSS CRC. In summary, the high prevalence of GOPC-ROS1 and noncanonical ROS1 fusions pose diagnostic challenges. We advocate NGS-based comprehensive molecular profiling of MSS CRCs that are wild type for RAS and BRAF and patient enrollment in precision trials
BRAF in-frame deletion mutants differ in their dimerization propensity, HSP90 dependence, and druggability
In-frame BRAF exon 12 deletions are increasingly identified in various tumor types. The resultant BRAF oncoproteins usually lack five amino acids in the β3-αC helix linker and sometimes contain de novo insertions. The dimerization status of BRAF oncoproteins, their precise pathomechanism, and their direct druggability by RAF inhibitors (RAFi) has been under debate. Here, we functionally characterize BRAF and two novel mutants, BRAF and BRAF, and compare them with other BRAF oncoproteins. We show that BRAF oncoproteins not only form stable homodimers and large multiprotein complexes but also require dimerization. Nevertheless, details matter as aromatic amino acids at the deletion junction of some BRAF oncoproteins, e.g., BRAF, increase their stability and dimerization propensity while conferring resistance to monomer-favoring RAFi such as dabrafenib or HSP 90/CDC37 inhibition. In contrast, dimer-favoring inhibitors such as naporafenib inhibit all BRAF mutants in cell lines and patient-derived organoids, suggesting that tumors driven by such oncoproteins are vulnerable to these compounds
Recommended from our members
A Search for Dark Higgs Bosons
Recent astrophysical and terrestrial experiments have motivated the proposal
of a dark sector with GeV-scale gauge boson force carriers and new Higgs
bosons. We present a search for a dark Higgs boson using 516 fb-1 of data
collected with the BABAR detector. We do not observe a significant signal and
we set 90% confidence level upper limits on the product of the Standard
Model-dark sector mixing angle and the dark sector coupling constant.Comment: 7 pages, 5 postscript figures, published version with improved plots
for b/w printin
RAC1(P29S) Induces a Mesenchymal Phenotypic Switch via Serum Response Factor to Promote Melanoma Development and Therapy Resistance
RAC1 P29 is the third most commonly mutated codon in human cutaneous melanoma, after BRAF V600 and NRAS Q61. Here, we study the role of RAC1P29S in melanoma development and reveal that RAC1P29S activates PAK, AKT, and a gene expression program initiated by the SRF/MRTF transcriptional pathway, which results in a melanocytic to mesenchymal phenotypic switch. Mice with ubiquitous expression of RAC1P29S from the endogenous locus develop lymphoma. When expressed only in melanocytes, RAC1P29S cooperates with oncogenic BRAF or with NF1-loss to promote tumorigenesis. RAC1P29S also drives resistance to BRAF inhibitors, which is reversed by SRF/MRTF inhibitors. These findings establish RAC1P29S as a promoter of melanoma initiation and mediator of therapy resistance, while identifying SRF/MRTF as a potential therapeutic target
IκBβ is an essential co-activator for LPS-induced IL-1β transcription in vivo
IkBβ forms a complex with the NF-κB subunits RelA and c-Rel that inhibits the transcription of IL-1β and other genes. Mice lacking IkBβ are protected against LPS-induced shock
- …