242 research outputs found

    Annealing-Induced Modifications in Physicochemical and Optoelectronic Properties of Ag-Doped Nanostructured CdS Thin Films

    Get PDF
    The Ag-doped nanostructured CdS thin films are grown by simple, cost effective chemical ion exchange technique at room temperature on ITO-coated glass substrate. These as grown thin films are annealed at 100, 200, 300, and 400°C in air atmosphere for 1 hour. To study the effect of annealing on physicochemical and optoelectronic properties, these as grown and annealed thin films are characterized for structural, compositional, morphological, optical, and electrical properties. X-ray diffraction (XRD) pattern reveals polycrystalline nature of these thin films with increase in crystallite size from 6.4 to 11.2 nm, from XRD the direct identification of Ag doping in CdS thin films cannot be judged, while shift in characteristics peak position of CdS is observed. The Raman spectrum represents increase in full width at half maxima and intensity of characteristic peak, confirming the material modification upon annealing treatment. Presence of Cd, Ag, and S in energy dispersive X-ray analysis spectra (EDAX) confirms expected elemental composition in thin films. Scanning electron microscopy (SEM) images represent grain growth and agglomeration upon annealing. Red shift in optical absorbance strength and energy band gap values from 2.28 to 2.14 eV is obtained. I-V response obtained from as grown and annealed thin films shows an enhancement in photosensitivity from 72% to 96% upon illumination to 100 mW/cm2 light source

    Genomic dissection of maternal, additive and non-additive genetic effects for growth and carcass traits in Nile tilapia

    Get PDF
    International audienceAbstractBackgroundThe availability of both pedigree and genomic sources of information for animal breeding and genetics has created new challenges in understanding how they can be best used and interpreted. This study estimated genetic variance components based on genomic information and compared these to the variance components estimated from pedigree alone in a population generated to estimate non-additive genetic variance. Furthermore, the study examined the impact of the assumptions of Hardy–Weinberg equilibrium (HWE) on estimates of genetic variance components. For the first time, the magnitude of inbreeding depression for important commercial traits in Nile tilapia was estimated by using genomic data.ResultsThe study estimated the non-additive genetic variance in a Nile tilapia population of full-sib families and, when present, it was almost entirely represented by additive-by-additive epistatic variance, although in pedigree studies this non-additive variance is commonly assumed to arise from dominance. For body depth (BD) and body weight at harvest (BWH), the proportion of additive-by-additive epistatic to phenotypic variance was estimated to be 0.15 and 0.17 using genomic data (P < 0.05). In addition, with genomic data, the maternal variance (P < 0.05) for BD, BWH, body length (BL) and fillet weight (FW) explained approximately 10% of the phenotypic variances, which was comparable to pedigree-based estimates. The study also showed the detrimental effects of inbreeding on commercial traits of tilapia, which was estimated to reduce trait values by 1.1, 0.9, 0.4 and 0.3% per 1% increase in the individual homozygosity for FW, BWH, BD and BL, respectively. The presence of inbreeding depression but lack of dominance variance was consistent with an infinitesimal dominance model for the traits.ConclusionsThe benefit of including non-additive genetic effects for genetic evaluations in tilapia breeding schemes is not evident from these findings, but the observed inbreeding depression points to a role for reciprocal recurrent selection. Commercially, this conclusion will depend on the scheme’s operational costs and resources. The creation of maternal lines in Tilapia breeding schemes may be a possibility if the variation associated with maternal effects is heritable

    Reduced regional brain cortical thickness in patients with heart failure.

    Get PDF
    AimsAutonomic, cognitive, and neuropsychologic deficits appear in heart failure (HF) subjects, and these compromised functions depend on cerebral cortex integrity in addition to that of subcortical and brainstem sites. Impaired autoregulation, low cardiac output, sleep-disordered-breathing, hypertension, and diabetic conditions in HF offer considerable potential to affect cortical areas by loss of neurons and glia, which would be expressed as reduced cortical thicknesses. However, except for gross descriptions of cortical volume loss/injury, regional cortical thickness integrity in HF is unknown. Our goal was to assess regional cortical thicknesses across the brain in HF, compared to control subjects.Methods and resultsWe examined localized cortical thicknesses in 35 HF and 61 control subjects with high-resolution T1-weighted images (3.0-Tesla MRI) using FreeSurfer software, and assessed group differences with analysis-of-covariance (covariates; age, gender; p&lt;0.05; FDR). Significantly-reduced cortical thicknesses appeared in HF over controls in multiple areas, including the frontal, parietal, temporal, and occipital lobes, more markedly on the left side, within areas that control autonomic, cognitive, affective, language, and visual functions.ConclusionHeart failure subjects show reduced regional cortical thicknesses in sites that control autonomic, cognitive, affective, language, and visual functions that are deficient in the condition. The findings suggest chronic tissue alterations, with regional changes reflecting loss of neurons and glia, and presumably are related to earlier-described axonal changes. The pathological mechanisms contributing to reduced cortical thicknesses likely include hypoxia/ischemia, accompanying impaired cerebral perfusion from reduced cardiac output and sleep-disordered-breathing and other comorbidities in HF

    DESIGNING EFFICIENT LOCALIZED SURFACE PLASMON RESONANCE-BASED SENSING PLATFORMS: OPTIMIZATION OF SENSOR RESPONSE BY CON-TROLLING THE EDGE LENGTH OF GOLD NANOPRISMS

    Get PDF
    poster abstractOver the last few years, the unique localized surface plasmon resonance (LSPR) properties of plasmonic nanostructures have been used to design la-bel-free biosensors. In this research, we demonstrate that it is the difference in edge length of gold nanoprisms that significantly influences their bulk re-fractive index sensitivity and local sensing efficiency. Nanoprisms with edge lengths in the range of 28-51 nm were synthesized by the chemical-reduction method and sensing platforms were fabricated by chemisorptions of these nanoprisms onto silanized glass substrates. The plasmonic nanosensors prepared from 28 nm edge length nanoprisms exhibited the largest sensitivity to change in bulk refractive index with a value of 647 nm/RIU. The refractive index sensitivity decreased with increasing edge length, with nanoprisms of 51 nm edge lengths displaying a sensitivity of 384 nm/RIU. In contrast, we found that the biosensing efficiency of sensing platforms modified with biotin increased with increasing edge length, and the sensing platforms fabricated from 51 nm edge length nanoprisms displaying the highest local sensing efficiency. The lowest concentration of streptavidin that could be measured reliably was 1.0 pM and the limit of detection for the sensing platforms fabricated from 51 nm edge length nanoprisms was 0.5 pM, which is much lower than found with gold bipyramids, nanostars, and nanorods

    Synthesis, characterization, molecular docking studies and biological activity ofcoumarin linked 2-pyridone heterocycles

    Get PDF
    In the present paper, the synthesis, characterization, antimicrobial activity and in silico molecular docking study of6-((arylidene)amino)-4-(4-chlorophenyl)-2-oxo-1-((1-(2-oxo-2H-chromen-3-yl)ethylidene)amino)-1,2-dihydropyridine-3,5-dicarbonitriles 4a-o have been reported. Compounds 4d, 4g, 4j, 4k, 4m and 4o show significant activity. Structuredetermination of the synthesized compounds has been done by the standard spectroscopic techniques. It is observed thatbiological activity is influenced by electronic environment of the molecules. Electron withdrawing group at para positionplays a major role for enhancing the biological activity for antibacterial activity and the electron donating group at paraposition for antifungal activity. Compounds 4a-o have been further evaluated for cytotoxicity on HeLa cells. From thecytotoxicity results, compounds have been found to possess low cytotoxicity with potent antimicrobial activity

    Synthesis, characterization, molecular docking studies and biological activity of coumarin linked 2-pyridone heterocycles

    Get PDF
    231-237In the present paper, the synthesis, characterization, antimicrobial activity and in silico molecular docking study of 6-((arylidene)amino)-4-(4-chlorophenyl)-2-oxo-1-((1-(2-oxo-2H-chromen-3-yl)ethylidene)amino)-1,2-dihydropyridine-3,5-dicarbonitriles 4a-o have been reported. Compounds 4d, 4g, 4j, 4k, 4m and 4o show significant activity. Structure determination of the synthesized compounds has been done by the standard spectroscopic techniques. It is observed that biological activity is influenced by electronic environment of the molecules. Electron withdrawing group at para position plays a major role for enhancing the biological activity for antibacterial activity and the electron donating group at para position for antifungal activity. Compounds 4a-o have been further evaluated for cytotoxicity on HeLa cells. From the cytotoxicity results, compounds have been found to possess low cytotoxicity with potent antimicrobial activity

    The novel circular RNA CircMef2c is positively associated with muscle growth in Nile tilapia

    Get PDF
    Muscle growth in teleosts is a complex biological process orchestrated by numerous protein-coding genes and non-coding RNAs. A few recent studies suggest that circRNAs are involved in teleost myogenesis, but the molecular networks involved remain poorly understood. In this study, an integrative omics approach was used to determine myogenic circRNAs in Nile tilapia by quantifying and comparing the expression profile of mRNAs, miRNAs, and circRNAs in fast muscle from full-sib fish with distinct growth rates. There were 1947 mRNAs, 9 miRNAs, and 4 circRNAs differentially expressed between fast- and slow-growing individuals. These miRNAs can regulate myogenic genes and have binding sites for the novel circRNA circMef2c. Our data indicate that circMef2c may interact with three miRNAs and 65 differentially expressed mRNAs to form multiple competing endogenous RNA networks that regulate growth, thus providing novel insights into the role of circRNAs in the regulation of muscle growth in teleosts.publishedVersio

    Genomic strategies for soybean oil improvement and biodiesel production

    Get PDF
    Track II: Transportation and BiofuelsIncludes audio file (21 min.)Soybean oil, a promising renewable energy resource, comprises 73% of biodiesel in addition to other industrial applications. Missouri is the fifth largest state in the US for soybean plantation. With the target to produce 225 million gallons of biodiesel by 2015 from the current 75 million gallons produced in 2005, efforts should not only focus on expanding the number of oil crops to meet the demand but also to increase the amount of oil per hectare for each crop. Considering the ever increasing need for biodiesel and the potential for Missouri to play a major role in national and international demand, We, at the National Center for Soybean Biotechnology focus on discovering the genetic factors that are responsible for oil content in soybean using genetic and genomic strategies. The long term goal is to apply discoveries in breeding programs and biotechnology for the development of improved soybean cultivars with increased oil content that will make this crop more competitive in end-uses. Our multidisciplinary approaches include traditional Quantitative Trait Loci (QTL) mapping, association mapping, bioinformatics and transgenics by developing new resources and utilizing already available resources such as mapping populations, diverse germplasm collections, genome sequence information and transgenes. In addition to total oil content, we are focusing on improving quality traits such as oleic acid which has direct human health benefits and application in biodiesel production. With the use of advanced genomic technologies, genetic materials, and synergistic efforts involving intra- and inter institutional collaborations, we believe that our current and future research will contribute substantially to biodiesel production. Increased production using high oil soybean cultivars will not only increase the economic gains to farmers/growers but also facilitate the US to emerge as the global leader in biodiesel production

    Intrinsic electrochemical activity of single walled carbon nanotube–Nafion assemblies

    Get PDF
    The intrinsic electrochemical properties and activity of single walled carbon nanotube (SWNT) network electrodes modified by a drop-cast Nafion film have been determined using the one electron oxidation of ferrocene trimethyl ammonium (FcTMA+) as a model redox probe in the Nafion film. Facilitated by the very low transport coefficient of FcTMA+ in Nafion (apparent diffusion coefficient of 1.8 × 10−10 cm2 s−1), SWNTs in the 2-D network behave as individual elements, at short (practical) times, each with their own characteristic diffusion, independent of neighbouring sites, and the response is diagnostic of the proportion of SWNTs active in the composite. Data are analysed using candidate models for cases where: (i) electron transfer events only occur at discrete sites along the sidewall (with a defect density typical of chemical vapour deposition SWNTs); (ii) all of the SWNTs in a network are active. The first case predicts currents that are much smaller than seen experimentally, indicating that significant portions of SWNTs are active in the SWNT–Nafion composite. However, the predictions for a fully active SWNT result in higher currents than seen experimentally, indicating that a fraction of SWNTs are not connected and/or that not all SWNTs are wetted completely by the Nafion film to provide full access of the redox mediator to the SWNT surface

    Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018

    Get PDF
    Anemia is a globally widespread condition in women and is associated with reduced economic productivity and increased mortality worldwide. Here we map annual 2000–2018 geospatial estimates of anemia prevalence in women of reproductive age (15–49 years) across 82 low- and middle-income countries (LMICs), stratify anemia by severity and aggregate results to policy-relevant administrative and national levels. Additionally, we provide subnational disparity analyses to provide a comprehensive overview of anemia prevalence inequalities within these countries and predict progress toward the World Health Organization’s Global Nutrition Target (WHO GNT) to reduce anemia by half by 2030. Our results demonstrate widespread moderate improvements in overall anemia prevalence but identify only three LMICs with a high probability of achieving the WHO GNT by 2030 at a national scale, and no LMIC is expected to achieve the target in all their subnational administrative units. Our maps show where large within-country disparities occur, as well as areas likely to fall short of the WHO GNT, offering precision public health tools so that adequate resource allocation and subsequent interventions can be targeted to the most vulnerable populations
    • …
    corecore