220 research outputs found
Perspectives of Second-Order Blind Identification for Operational Modal Analysis of Civil Structures
Innovative methods for output-only estimation of the modal properties of civil structures are based on blind source separation techniques. In the present paper attention is focused on the second-order blind identification (SOBI) algorithm and the influence of its analysis parameters on computational time and accuracy of modal parameter estimates. These represent key issues in view of the automation of the algorithm and its integration within vibration-based monitoring systems. The herein reported analyses and results provide useful hints for reduction of computational time and control of accuracy of estimates. The latter topic is of interest in the case of single modal identification tests, too. A criterion for extraction of accurate modal parameter estimates is identified and applied to selected experimental case studies. They are representative of the different levels of complexity that can be encountered during real modal tests. The obtained results point out that SOBI can provide accurate estimates and it can also be automated, confirming that it represents a profitable alternative for output-only modal analysis and vibration-based monitoring of civil structures
Applications of Cement-Based Smart Composites to Civil Structural Health Monitoring: A Review
In recent years, cement-based smart composites (CSCs) doped with conductive filler have attracted increasing research interest because of their high potentiality as self-sensing materials for civil Structural Health Monitoring (SHM) applications. Nevertheless, several issues are still open and need further studies. This paper presents an extensive state-of-the-art in which investigations on CSCs are summarized and critically revised, with the primary aim of outlining the main limits and development points. The literature review first addresses in detail several specific issues related to fabrication and operation as sensing elements of CSC samples. State-of-the-art applications of CSCs to SHM of reduced-, medium- and full-scale structural prototypes are extensively reviewed afterwards, resulting in a database useful to critically revise the main trends and open issues of the research in this field
Perspectives of Second-Order Blind Identification for Operational Modal Analysis of Civil Structures
Innovative methods for output-only estimation of the modal properties of civil structures are based on blind source separation techniques. In the present paper attention is focused on the second-order blind identification (SOBI) algorithm and the influence of its analysis parameters on computational time and accuracy of modal parameter estimates. These represent key issues in view of the automation of the algorithm and its integration within vibration-based monitoring systems. The herein reported analyses and results provide useful hints for reduction of computational time and control of accuracy of estimates. The latter topic is of interest in the case of single modal identification tests, too. A criterion for extraction of accurate modal parameter estimates is identified and applied to selected experimental case studies. They are representative of the different levels of complexity that can be encountered during real modal tests. The obtained results point out that SOBI can provide accurate estimates and it can also be automated, confirming that it represents a profitable alternative for output-only modal analysis and vibration-based monitoring of civil structures
Characterisation of wine yeasts isolated at different temperatures using the enrichment technique
Research NoteSaccharomyces cerevisiae strains isolated from fermenting grape must incubated at extreme fermentation temperatures (40 and 5 degrees C) were oenologically characterised. These cultures compared with S. cerevisiae wine strains, show a wider optimum temperature for growth and can ferment vigorously in a wider temperature range (27 to 35 degrees C)
Thermal Performance Investigation by Infrared Analysis of Mini Pulsating Heat Pipe
A promising solution in the field of passive two-phase heat transfer devices is represented by Pulsating Heat Pipes (PHPs). They are undoubtedly appealing due to the high heat transfer capability, efficient thermal control, adaptability and low cost. In the last years they are raising concern for space applications that are characterised by extreme environmental conditions, strictly constrains in terms of compactness, reliability and the need to dissipate efficiently heat in microgravity conditions. In this study, the thermal performance of oscillating heat pipes that consists of extra-thin metallic pipes are investigated: the adoption of metallic pipes with an inner diameter less than 0.4 mm permits to couple flexibility and compactness with high heat transfer performance. HFC-134a is used as working fluid. Many authors have investigated the pulsating behaviour of this type of heat transfer devices only considering the average temperature of the evaporator and condenser. In this work, to deeply investigate the oscillating behaviour of the proposed PHP, it is adopted an approach based on the study of the local temperature distributions on the wall of the PHP, acquired with a high-speed and high-resolution infrared camera. The local analysis of the temperature trends is of fundamental importance in the understanding of the complex phenomena that govern the pulsating field
Design and implementation of a modulating test plant to assess the performance of innovative cross-flow heat recovery units for air conditioning system: Preliminary results
Nowadays global warming has increased consciousness of the dangers of energy wastefulness: in the last 50 years the temperature of the Earth's surface rose by approximately 1 °C. The building sector is responsible for a very high percentage of world carbon emissions and with the increasing of the request for comfort, heating, ventilation and air conditioning, buildings energy consumption is rapidly growing. Consequently, it appears fundamental the role played by the improvement of buildings energy performance within global policies of emissions reduction. In this context an increasing attention is given to the energy waste reduction in tertiary sector: bars, offices, restaurants, meetings, shops, school buildings, gyms and in general in the buildings in which the minimization of the energy dissipation is requested. The present study is part of the NANOFANCOIL project (POR-FESR 2014-2020): one of the objectives was the design and implementation of a modulating test plant to assess the performance of innovative cross-flow heat recovery units for air conditioning system. This experimental setup was mainly composed by two climatic chambers that enabled to simulate the environmental conditions of interest. The temperature could vary from -20°C to 0°C and from 10°C to 30°C for the cold and the hot chamber, respectively (i.e. the outdoor and the indoor environment). Moreover, the climatic chamber that simulates the indoor environment could be controlled also in terms of humidity thanks to a steam humidifier that guaranteed 5 kg/h of vapour. Preliminary results about the heat transfer behaviour of a cross-flow heat recovery unit (air-to-air) for controlled mechanical ventilation systems that employs mini-channels in order to increase performance and reduce size and costs are presented here
Shaking table tests for the experimental verification of the effectiveness of an automated modal parameter monitoring system for existing bridges in seismic areas
Reinforced concrete bridges represent a majority of the Italian stock and they play a primary role to ensure the efficiency of the transportation network and prompt rescue in the case of an emergency. However, most of them have been designed and built according to outdated codes, or even without any seismic detailing. The significant impact of strong motions on the road network as well as the human life and economy emphasizes the need for effective strategies for post-earthquake emergency management and to support rescue operations. The present paper aims at evaluating, against real data, the effectiveness of automated modal parameter monitoring for vibration-based Structural Health Monitoring (SHM) of existing bridges in earthquake prone areas. This objective has been pursued in the context of shaking table tests on a 1:3 scale single span bridge representative of existing highway bridges built in the 60's in Italy. The dynamic response of the structure before and after the application of asynchronous seismic input has been analyzed for damage detection and performance assessment. Results show that partially hidden damage can be remotely detected, thus validating the interesting applicative perspectives of automated output-only modal identification and modal-based damage detection for fast assessment of existing bridges in the early earthquake aftershock. The robustness of the SHM system to sensor overload due to earthquake shaking has been also assessed, demonstrating the applicability of modal-based SHM in seismic regions even in the absence of a measurement chain specifically designed to resolve the large amplitude vibrations induced by earthquakes. Finally, the possibility of complementing modal-based SHM with drift-based estimates is explored
On the complexity of the Saccharomyces bayanus taxon: hybridization and potential hybrid speciation
Although the genus Saccharomyces has been thoroughly studied, some species in the genus has not yet been accurately resolved; an example is S. bayanus, a taxon that includes genetically diverse lineages of pure and hybrid strains. This diversity makes the assignation and classification of strains belonging to this species unclear and controversial. They have been subdivided by some authors into two varieties (bayanus and uvarum), which have been raised to the species level by others. In this work, we evaluate the complexity of 46 different strains included in the S. bayanus taxon by means of PCR-RFLP analysis and by sequencing of 34 gene regions and one mitochondrial gene. Using the sequence data, and based on the S. bayanus var. bayanus reference strain NBRC 1948, a hypothetical pure S. bayanus was reconstructed for these genes that showed alleles with similarity values lower than 97% with the S. bayanus var. uvarum strain CBS 7001, and of 99Âż100% with the non S. cerevisiae portion in S. pastorianus Weihenstephan 34/70 and with the new species S. eubayanus. Among the S. bayanus strains under study, different levels of homozygosity, hybridization and introgression were found; however, no pure S. bayanus var. bayanus strain was identified. These S. bayanus hybrids can be classified into two types: homozygous (type I) and heterozygous hybrids (type II), indicating that they have been originated by different hybridization processes. Therefore, a putative evolutionary scenario involving two different hybridization events between a S. bayanus var. uvarum and unknown European S. eubayanus-like strains can be postulated to explain the genomic diversity observed in our S. bayanus var. bayanus strains
The Minimum Detectable Damage as an Optimization Criterion for Performance-based Sensor Placement
International audienc
Evidence for Divergent Evolution of Growth Temperature Preference in Sympatric Saccharomyces Species
The genus Saccharomyces currently includes eight species in addition to the model yeast Saccharomyces cerevisiae, most of which can be consistently isolated from tree bark and soil. We recently found sympatric pairs of Saccharomyces species, composed of one cryotolerant and one thermotolerant species in oak bark samples of various geographic origins. In order to contribute to explain the occurrence in sympatry of Saccharomyces species, we screened Saccharomyces genomic data for protein divergence that might be correlated to distinct growth temperature preferences of the species, using the dN/dS ratio as a measure of protein evolution rates and pair-wise species comparisons. In addition to proteins previously implicated in growth at suboptimal temperatures, we found that glycolytic enzymes were among the proteins exhibiting higher than expected divergence when one cryotolerant and one thermotolerant species are compared. By measuring glycolytic fluxes and glycolytic enzymatic activities in different species and at different temperatures, we subsequently show that the unusual divergence of glycolytic genes may be related to divergent evolution of the glycolytic pathway aligning its performance to the growth temperature profiles of the different species. In general, our results support the view that growth temperature preference is a trait that may have undergone divergent selection in the course of ecological speciation in Saccharomyces
- …