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Innovative methods for output-only estimation of the modal properties of civil structures are based on blind source separation
techniques. In the present paper attention is focused on the second-order blind identification (SOBI) algorithm and the influence
of its analysis parameters on computational time and accuracy of modal parameter estimates. These represent key issues in view
of the automation of the algorithm and its integration within vibration-based monitoring systems. The herein reported analyses
and results provide useful hints for reduction of computational time and control of accuracy of estimates. The latter topic is of
interest in the case of single modal identification tests, too. A criterion for extraction of accurate modal parameter estimates is
identified and applied to selected experimental case studies. They are representative of the different levels of complexity that can
be encountered during real modal tests. The obtained results point out that SOBI can provide accurate estimates and it can also be
automated, confirming that it represents a profitable alternative for output-only modal analysis and vibration-based monitoring of
civil structures.

1. Introduction

Time domain methods have been proved to be very effective
for operational modal analysis (OMA) purposes. They fit
a mathematical model to the (correlation functions of the)
observed data in order to extract the modal properties [1].
Thus, one of the main problems is related to the optimal
setting of the parameters of the model in order to obtain
reliable and accurate estimates of the dynamic properties.
In practical applications a conservative approach is usually
adopted. It is based on the overspecification of the order of the
model. This is set large enough to ensure the identification of
all physical modes. The amount of overspecification depends
on the characteristics of the analyzed dataset. Overmodeling
introduces spurious poles besides the physical poles. This
makes the modal parameter estimation more complicated.
The discrimination between physical and spurious poles
is usually based on the construction of the stabilization
diagram.

The automatic interpretation of the stabilization diagram
is still a challenge. Even if several research efforts have been

made to improve its quality (see, for instance, [2–5]) and to
automatically identify the physical poles (see, for instance, [6,
7]), the proposed methods are often computationally inten-
sive and require the computation of a number of parameters
and hard and soft validation criteria (see, for instance, [6]);
moreover, the reliability of results and the generality of the
methods are limited by the need of calibrating thresholds and
other analysis parameters for each monitored structure [7].
On the other hand, nonparametric methods do not require
the interpretation of stabilization diagrams and, as such, can
more easily be automated [8–10].

The use of blind source separation (BSS) techniques in
the context of OMA and structural healthmonitoring (SHM)
has been recently proposed [11–15]. BSS techniques extract
a set of signals, the so-called sources, from observations of
their mixtures [16] based on fairly general assumptions about
the sources and the mixing process. BSS techniques can be
classified as linear [17] or nonlinear [18], depending on the
type of combination of the sources. Moreover, static mixing
[17] and convolutive mixing [19] can be considered.
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An increasing number of applications in the field of
structural dynamics have recently appeared in the literature
[15, 20–22]. Even if the time response of structures is related
to the excitation through a convolutive mixture, the dynamic
response of a structure can also be interpreted as a static
mixture of sources (the modal coordinates) in the field
of modal identification [15]. The physical interpretation of
sources as modal coordinates becomes clear by comparing
the modal expansion of the dynamic response (1) with the
linear and static mixture of sources (2):

{𝑦 (𝑡)} = [Φ] {𝑞 (𝑡)} , (1)

{𝑦 (𝑡)} = [𝐴] {𝑠 (𝑡)} . (2)

In fact, the source signals {𝑠(𝑡)} play the role of the modal
coordinates {𝑞(𝑡)} and, on the analogy, there is a one-to-one
relationship between the modal matrix [Φ] and the mixing
matrix [𝐴]. Thus, in the context of modal identification,
BSS techniques aim at recovering the mixing matrix [𝐴],
holding the information about the mode shapes, and the
modal responses, here represented by the sources {𝑠(𝑡)}, from
their observed mixtures {𝑦(𝑡)}.

No mathematical model is assumed to describe the
process that produced the measured data. The mixing model
is the only assumption. Thus, BSS techniques can be referred
to as time domain, nonparametric methods for OMA. The
absence of stabilization charts to be interpreted or model
parameters to be set simplifies the automation and makes
BSS techniques an interesting alternative to the classical time
domain modal identification methods. Nevertheless, the use
of BSS techniques in structural dynamics is still a challenge
[14], and a performance assessment of BSS techniques in the
context of output-onlymodal identification of civil structures
is certainly of interest.

Some limits in the use of BSS for OMA can be traced back
to the basic assumptions of the different techniques, which
show different degree of compatibility with the dynamic
systems of interest. The applicability of principal component
analysis (PCA) to real case studies has been limited by the
need for information about the mass matrix [15]. Indepen-
dent component analysis (ICA) has been recognized to be
muchmore suitable thanPCA to vibration data processing for
modal identification purposes [15]. The main drawbacks are
related to the use of high-order statistics, whose computation
is time consuming and difficult in the presence of a scarcity of
data, and to the poormodal identification performance of the
method for systems characterized by damping ratios larger
than 1% [15]. Methods based on second-order statistics of the
observed signals assume that the sources are uncorrelated
for all delays and have different spectra. Among these,
the second-order blind identification (SOBI) algorithm [17]
has been recognized as a promising alternative for modal
parameter identification in a number of studies [20–22].
When SOBI is applied to vibration data, the real valued
mixing matrix implies real valued mode shape estimates.
This can be a drawback of the method in the presence
of complex modes. However, taking into account that the
basic assumptions of SOBI fit the needs of the output-only
identification of dynamics systems and that civil engineering

structures often show real modes, in the following sections
attention is focused on SOBI and its performance for OMA
of civil structures.

After a discussion about how SOBI can be adapted to
the analysis of random responses in the context of OMA,
the present study investigates the influence of the analysis
parameters on accuracy of modal parameter estimates and
computational time. The identification performance of SOBI
is also assessed against a number of experimental case studies
related to civil structures and characterized by increasing
degree of complexity. The final objective is the definition of
rules of thumbs for the application and automation of SOBI
in the context of OMA and vibration-based SHM of civil
structures.

2. SOBI and Modal Identification

Thebasics of SOBI are briefly reported in this section to high-
light, at the end, how the method has been herein adapted
to the analysis of random responses for OMA purposes. This
discussion puts in evidence the analysis parameters of the
algorithm.Their influence on the quality of modal parameter
estimates is investigated in the next section.

When some (additive) noise {𝑛(𝑡)} is present in the
measured response, (2) can be rewritten as

{𝑦 (𝑡)} = [𝐴] {𝑠 (𝑡)} + {𝑛 (𝑡)} . (3)

The 𝑙 recorded time histories are, therefore, modelled as a
linear combination of 𝑁

𝑚
modal responses (the sources)

plus noise. As a consequence, if there are 𝑁
𝑚
modes in the

frequency range under investigation, they can be identified
only if rank([𝐴]) = 𝑁

𝑚
. Since the mixing matrix has

dimension 𝑙 × 𝑁
𝑚
, this implies that the number of measure-

ment channels has to be larger than or equal to the number of
active modes: 𝑙 ≥ 𝑁

𝑚
. Thus, SOBI can be classified as a low-

order method for OMA. Moreover, since the columns of the
mixing matrix represent estimates of the mode shapes of the
structure under test, a judicious choice of sensor locations is
needed so that the observed mode shape vectors are linearly
independent and the rank of [𝐴] is preserved.

The issues related to the identifiability of a limited number
of modes can be mitigated through the repeated application
of band-pass filtering until the entire frequency range of
interest is investigated. However, this procedure leads to a
major increase in the time of analysis.

A fundamental assumption in SOBI is that the sources are
stationary, uncorrelated, and scaled to have unit variance, so
their covariance matrix is the identity matrix:

[𝑅
𝑠𝑠
(0)] = 𝐸 {{𝑠 (𝑡)} {𝑠 (𝑡)}𝑇} = [𝐼] , (4)

where the superscript𝑇 denotes transpose.The additive noise
is assumed to be a temporally and spatially white stationary
random process, with

𝐸 [{𝑛 (𝑡)}] = {0} , (5)

[𝑅
𝑛𝑛
(0)] = 𝐸 [{𝑛 (𝑡)} {𝑛 (𝑡)}𝑇] = 𝜎2 [𝐼] . (6)



Shock and Vibration 3

If the added noise is also independent of the source signals,
this implies

𝐸 [{𝑛 (𝑡)} {𝑠 (𝑡)}𝑇] = [0] . (7)

The first step of the algorithm consists of whitening the signal
part of the observed data {𝑥(𝑡)} = [𝐴]{𝑠(𝑡)}. This is achieved
by applying a linear transformation to {𝑥(𝑡)} such that the
whitened data {𝑧(𝑡)} are uncorrelated and have unit variance:

{𝑧 (𝑡)} = [𝑊] {𝑥 (𝑡)} 󳨐⇒ [𝑅
𝑧𝑧
(0)]

= 𝐸 [{𝑧 (𝑡)} {𝑧 (𝑡)}𝑇] = [𝐼] .
(8)

Thematrix [𝑊] defining this transformation is referred to as
the whitening matrix. From (8) and (4) it is easy to check that

[𝑅
𝑧𝑧
(0)] = [𝑊] [𝐴] 𝐸 [{𝑠 (𝑡)} {𝑠 (𝑡)}𝑇] [𝐴]𝑇[𝑊]𝑇

= [𝑊] [𝐴] [𝐴]𝑇[𝑊]𝑇 = [𝐼] .
(9)

Thus, if [𝑊] is a whitening matrix, [𝐴󸀠] = [𝑊][𝐴] is an
𝑁
𝑚

× 𝑁
𝑚

unitary matrix. As a consequence, the mixing
matrix can be factored as the product of the inverse of the
whitening matrix and a unitary matrix (to be determined).

Whitening of the measured response {𝑦(𝑡)} also obeys a
linear model:

[𝑊] {𝑦 (𝑡)} = [𝑊] ([𝐴] {𝑠 (𝑡)} + {𝑛 (𝑡)})

= [𝐴󸀠] {𝑠 (𝑡)} + [𝑊] {𝑛 (𝑡)} .
(10)

From the covariance matrix of the observed mixture

[𝑅
𝑦𝑦
(0)] = 𝐸 [{𝑦 (𝑡)} {𝑦 (𝑡)}

𝑇

] = [𝐴] [𝐴]𝑇 + 𝜎2 [𝐼] , (11)

the following equation is obtained:

[𝐴] [𝐴]𝑇 = [𝑅
𝑦𝑦
(0)] − 𝜎2 [𝐼] . (12)

Combining (10)with (12) and taking into account (4), (6), and
(7), it is possible to show that the whitening matrix [𝑊] can
be derived from the covariancematrix [𝑅

𝑦𝑦
(0)], provided that

the noise covariance matrix is known or can be estimated.
From a practical point of view, once the measured data

have been centralized by removal of themean value fromeach
component of {𝑦(𝑡)}, whitening is obtained as follows. First of
all, the eigenvalue decomposition of [𝑅

𝑦𝑦
(0)] is computed:

[𝑅
𝑦𝑦
(0)] = 𝐸 [{𝑦 (𝑡)} {𝑦 (𝑡)}

𝑇

] = [𝑉] [𝐷] [𝑉]𝑇, (13)

where [𝑉] is the matrix of eigenvectors and [𝐷] is the
diagonal matrix of eigenvalues. If only the 𝑁

𝑚
largest

eigenvalues 𝑑
1
, . . . , 𝑑

𝑁
𝑚

and the corresponding eigenvectors
{V
1
}, . . . , {V

𝑁
𝑚

} of [𝑅
𝑦𝑦
(0)] are retained, the average of the

remaining 𝑙 − 𝑁
𝑚
eigenvalues yields an estimate 𝜎2 of the

noise variance, under the assumption of white noise [17].
The whitened signals are then computed from the largest
eigenvalues and the corresponding eigenvectors as

{𝑧 (𝑡)} = ([𝐷
𝑁
𝑚

] − 𝜎2 [𝐼
𝑁
𝑚

])
−1/2

[𝑉
𝑁
𝑚

]
𝑇

{𝑦 (𝑡)}

= [𝑊] {𝑦 (𝑡)} ,
(14)

where [𝐷
𝑁
𝑚

] is the submatrix of [𝐷] holding only the 𝑁
𝑚

largest eigenvalues, [𝑉
𝑁
𝑚

] is the submatrix of [𝑉] collecting
the eigenvectors corresponding to the𝑁

𝑚
largest eigenvalues

of [𝑅
𝑦𝑦
(0)], and the whitening matrix is given by

[𝑊] = ([𝐷
𝑁
𝑚

] − 𝜎2 [𝐼])
−1/2

[𝑉
𝑁
𝑚

]
𝑇

. (15)

In (6) the noise variance is assumed to be the same for all
channels in agreement with the original formulation of the
method [17]. However, in practical applications the noise
distribution can vary from sensor to sensor, even if it is
typically assumed that two sensors show uncorrelated noise
(see, for instance, [23]). Moreover, sensor noise is often 1/𝑓-
type noise rather than temporally white noise. The white
noise assumption is needed to get an estimate 𝜎2 of the noise
variance as the average of the smallest 𝑙 − 𝑁

𝑚
eigenvalues

of [𝑅
𝑦𝑦
(0)]; see (14), (15), and (16). However, as clarified at

the end of this section, the estimation of the noise variance
before the extraction of the sources can be avoided for
OMA purposes. In fact, SOBI is applied to estimate the
correlation functions of both the sources and the noise. The
discrimination betweenmodal responses and noise is carried
out in a second stage. Thus, the different noise distributions
do not affect the modal identification performance of the
method in practical applications.The assumption of spatially
white noise is not a limiting factor in the context of OMA.
However, froma general point of view, the blind identification
problem when [𝑅

𝑛𝑛
(0)] is a full matrix can be solved by

carrying out a robust whitening, based on the decomposition
of a linear combination of a set of covariance matrices taken
at nonzero time lags [24], instead of the classical whitening
given by (13) and (15).

Once the whitened signals have been obtained, the
following 𝑝 time-shifted covariance matrices have to be
computed:

[𝑅
𝑧𝑧
(𝜏
𝑘
)] , 𝑘 = 1, . . . , 𝑝. (16)

In order to estimate the sources and the mixing matrix,
SOBI carries out an approximate joint diagonalization of
those 𝑝 time-shifted covariance matrices according to the
joint approximate diagonalization (JAD) technique [17]. The
objective of the JAD is to find the unitary matrix [Ψ]
that approximately diagonalizes the time-shifted covariance
matrices. An optimization problem is defined with respect
to the matrix [Ψ] that minimizes the sum of all off-diagonal
terms of [Ψ]𝑇[𝑅

𝑧𝑧
(𝜏
𝑘
)][Ψ](𝑘 = 1, . . . , 𝑝) for the 𝑝 time-

shifted covariance matrices:

min
[Ψ]

𝑝

∑
𝑘=1

off ([Ψ]𝑇 [𝑅
𝑧𝑧
(𝜏
𝑘
)] [Ψ]) . (17)

The solution to the minimization problem is found by
means of a numerical algorithm based on the Jacobi rotation
technique [17]. Two parameters have to be set: the number 𝑝
of time-shifted covariance matrices to be jointly diagonalized
and the threshold 𝑡 used to stop JAD. Concerning the
threshold 𝑡, the problem of its setting has been analyzed
in [25], showing that very small values for 𝑡 have no sense



4 Shock and Vibration

because the diagonality criterion is approximate itself. Thus,
it is usually unnecessary to push the accuracy of the rotation
matrix to the machine precision. Setting the value of 𝑡 to the
square root of the machine precision is sufficient. Concern-
ing the number 𝑝 of time-shifted covariance matrices, the
diagonalization performance improves when 𝑝 increases and
it rapidly converges in most cases [17]. Once the matrix [Ψ]
has been obtained, the demixing matrix [𝑈] and the mixing
matrix [𝐴] can be computed:

[𝑈] = [Ψ]𝑇 [𝑊] , (18)

[𝐴] = [𝑊]+ [Ψ] , (19)

where the superscript + denotes pseudoinverse. The result-
ing sources are shift-uncorrelated because the matrices
[𝑅
𝑠𝑠
(𝜏
𝑘
)] are nearly diagonal. The sources are obtained as

follows:

{𝑠 (𝑡)} = [𝑈] {𝑦 (𝑡)} . (20)

The mode shapes of the structure are obtained from the
columns of the mixing matrix. The technique for the estima-
tion of natural frequencies and damping ratios depends on
the type of data used formodal identification. In the literature
SOBI has been applied to free responses, impulse responses,
and responses to random excitation [20–22]. In the first two
cases, the estimation of natural frequencies and damping
ratios from the obtained sources is straightforward. In fact,
taking into account that the free vibration response can
be expressed as a sum of exponentially decaying sinusoids,
fitting this expression to the data allows the estimation of
the modal parameters (refer to [22] for more details). In the
case of response to random excitation, while the estimation
of natural frequencies from the identified sources is again
straightforward, this is not the case of damping ratios, whose
estimation requires the knowledge of the applied random
excitation [20]. However, the extension of SOBI to the
analysis of random responses for the estimation of modal
parameters including damping is immediate by recognizing
that also the correlation function can be expressed as a sum
of decaying sinusoids. This is the same basic assumption
adopted by the NExT-type procedures [1]. In this case, there
is no need to recover the sources, because natural frequencies
and damping ratios can be directly estimated from their
correlations 𝑅

𝑠𝑠
(𝜏
𝑘
) as obtained from the JAD.

A simplified approach to the estimation of the modal
properties by SOBI in the case of random response can be
outlined as follows.

(i) Compute the whitening matrix [𝑊] from the cen-
tralized dataset according to (13) and (15); since the
number of modes is not known a priori and the
criterion for appropriate selection of the number𝑁

𝑚

of eigenvalues to be retained is still debated, it is
possible to set 𝑁

𝑚
= 𝑙; thus, 𝑙 sources are extracted

from the data even if the number of modes is likely
lower than 𝑙; as a result, the sources associated with
the actual structural modes have to be selected in a
second stage based, for instance, on the error in fitting

the correlations 𝑅
𝑠𝑠
(𝜏
𝑘
) with exponentially damped

harmonic functions; this approach was originally
proposed in [20] for the analysis of impulse responses.

(ii) Compute the whitened dataset {𝑧(𝑡)}.
(iii) Compute the time-shifted covariance matrices

[𝑅
𝑧𝑧
(𝜏
𝑘
)] and select 𝑝 of them to apply the JAD.

(iv) The JAD of the 𝑝 time-shifted covariance matrices
[𝑅
𝑧𝑧
(𝜏
𝑘
)] with 𝑘 = 1, . . . , 𝑝 provides the unitary

matrix [Ψ], which allows the computation of the
mixing matrix [𝐴] according to (19) and the autocor-
relations 𝑅

𝑠𝑠
(𝜏
𝑘
);

(v) Natural frequencies and damping ratios are finally
estimated; different approaches can be adopted, such
as regression on zero-crossing times and logarith-
mic decrement, or single-degree-of-freedom (SDOF)
curve fitting estimators; the use of SDOF curve fitting
estimators allows the computation of the fitting error;
this makes a quantitative selection of the correlations
associatedwith actual structuralmodes in the absence
of noise rejection in the computation of the whitening
matrix possible; the selection of the number of time
lags 𝑝 now plays a primary role in the process, since
it not only is responsible for the matrix [Ψ] but also
defines the length of the correlation functions𝑅

𝑠𝑠
(𝜏
𝑘
);

thus, taking into account the physics of the problem,
𝑝 has to be set as a function of the period of the
fundamental mode so that a sufficient number of
cycles are present in the correlation of the source
associated with the fundamental mode; a criterion for
setting of 𝑝 is given in Section 3.

(vi) The mode shapes are obtained from the columns
of the mixing matrix corresponding to the source
correlations selected in the previous step of analysis.

It is interesting to note that, unlike the other two-stage
modal identification methods, SOBI provides the mixing
matrix and, therefore, themode shape estimates, first; natural
frequencies and damping ratios are obtained in a second stage
through postprocessing of the obtained sources. Finally, it is
worth pointing out that SOBI can identify distinct, eventually
closely spaced modes but it shows serious limitations in the
presence of repeated modes [26].

3. Performance Assessment of SOBI for
OMA of Civil Structures

In this section the effect of the parameters 𝑝 and 𝑡 on
accuracy of modal parameter estimates and computational
time of SOBI is investigated. SOBI is applied to OMA of
selected case studies. Both simulated and real datasets have
been considered. The final objective is the definition of rules
of thumbs for the application and automation of SOBI for
output-only modal analysis and vibration-based SHM of
civil structures. The problem of the definition of criteria
and approaches to reject the noise and, therefore, define in
advance the expected number of modes is out of the scope of
the present paper. SOBI is herein applied in order to extract
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Figure 1: The benchmark 6-DOF system.

a number of modes equal to the number of measurement
channels, as mentioned in the previous section.The obtained
source correlations can represent both modal responses and
noise sources. However, noise sources are distinguishable
from modal responses [20] (this makes the definition of
noise rejection mechanisms less critical in SOBI with respect
to parametric time domain modal identification methods,
which try to fit a model to the measured system response)
and they can be eliminated in the second stage of the analysis
aimed at estimating the natural frequencies and damping
ratios. After the selection of the sources associated with
modal responses, in this study the natural frequency of the
𝑖th mode is estimated by a linear regression on the zero-
crossing times of the associated correlation function 𝑅

𝑠𝑠
(𝜏
𝑘
),

while damping ratio is calculated through the logarithmic
decrement technique on the analogy with another well-
establishedOMA technique, the enhanced frequency domain
decomposition (EFDD) [27].

Sensitivity analyses have been carried out in order to
assess the effect of the parameters governing the JAD (the
number 𝑝 of time-shifted covariance matrices to be jointly
diagonalized and the threshold 𝑡 used to stop the numerical
procedure) on accuracy and computational time of SOBI
when it is applied to output-only modal analysis. The first
analyzed record is represented by the simulated response to
a Gaussian white noise applied to degree-of-freedom (DOF)
number 1 of the 6-DOF system shown in Figure 1. Rayleigh
damping is adopted. Assuming 1% damping for the first and
the last mode, the following proportionality constants have
been obtained: 𝑎

0
= 0.1523 for the mass matrix and 𝑎

1
=

4.15𝐸−4 for the stiffness matrix.Themodal properties of the
system are reported in Table 1.The response of the system has
been simulated at all the six DOFs and it has been sampled
at 100Hz and decimated at 10Hz before processing. White
noise has also been added to the time series in order to
simulate measurement noise. A signal-to-noise ratio of 5 dB
has been considered. The adopted sampling frequency after
decimation results in the extraction of four modal responses
and two noise sources.

The results obtained from the application of SOBI to
the simulated data have then been validated against oper-
ational response measurements of a number of real civil
structures. Good quality data from a reinforced concrete
structure characterized by well-separated modes (the Tower
of the Nations in Naples [28]) and a reinforced concrete
structure characterized by two closely spaced modes (the
School of Engineering Main Building in Naples [29]) and
noisy data from a masonry bell tower characterized by two
closely spaced modes (S. Maria del Carmine Bell Tower in
Naples [30]) are the considered benchmark record.They have

Table 1: Modal properties of the simulated 6-DOF system.

Mode number Natural frequency [Hz] Damping ratio [%]
I 1.509 1.00
II 2.823 0.80
III 3.810 0.81
IV 4.737 0.87
V 5.593 0.95
VI 6.167 1.00

been used also to validate an innovative automated OMA
procedure in [9].The selected real test cases are representative
of modal identification problems typically encountered in
civil engineering and characterized by different degree of
difficulty. Reference modal parameters have been extracted
from these records by well-established techniques, such as
frequency domain decomposition (FDD) [31] and stochastic
subspace identification (SSI) [1, 32], which have provided very
consistent estimates.

The results of the sensitivity analyses on the simulated
dataset are presented first. According to these results, some
rules of thumbs for the application of SOBI to modal
identification are defined and applied to the real case studies.
Validation of the effectiveness of the proposed criterion
for the selection of 𝑝 is based on comparisons with the
modal estimates provided by FDD and SSI. Even if SOBI
and its variants have already been applied to the modal
identification of real civil structures [33], this study represents
an interesting example of systematic application of SOBI
to modal identification problems typically encountered in
civil engineering and characterized by different degree of
difficulty.

Concerning parameter settings, a careful literature review
has provided a recommended value for 𝑡, as discussed in the
previous section. However, this value has been determined
according to a theoretical framework and not in view of
the application of SOBI to output-only modal analysis and
vibration-based SHM. Even if the computational time might
not be a problem for single modal identification tests, its con-
trol can be of interest for continuous, automated monitoring.
The computational time can range from fractions of seconds
to several minutes or hours depending on the settings of 𝑡
and 𝑝 and the number of measurement channels. Figure 2
shows the dependence of the computational time from 𝑝 and
𝑡 for a real dataset consisting of 12 measurement channels. As
expected, the larger the number of measurement channels,
the higher the computational time of the algorithm, and it
increases when 𝑝 becomes larger and 𝑡 decreases.
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Figure 2: Sensitivity of computational time (sample plot).

The assessment of the influence of 𝑡 and 𝑝 on the modal
identification results can provide effective hints to ensure
accuratemodal estimates or to reduce the computational time
with little or no accuracy losses. To this aim, the simulated
dataset has been processed by SOBI, and the identifiedmodes
in the range 0–5Hz have been compared with the theoretical
values for different settings of 𝑡 and 𝑝. The cumulative
frequency scatter 𝐽

𝑓
and the cumulative discrepancy between

corresponding mode shapes 𝐽
𝑠

𝐽
𝑓
=
𝑁
𝑚

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓SOBI
𝑖

− 𝑓ref
𝑖

𝑓ref
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⋅ 100,

𝐽
𝑠
=
𝑁
𝑚

∑
𝑖=1

[1 −MAC ({𝜙SOBI
𝑖

} , {𝜙ref
𝑖
})] ⋅ 100

(21)

quantify the accuracy of the modal identification results. In
(21) 𝑁

𝑚
is the number of identified structural modes, while

the MAC between theoretical and estimated mode shapes is
computed as per its definition [34]. The plot of 𝐽

𝑓
+ 𝐽
𝑠
versus

𝑝 and 𝑡 for the simulated dataset is shown in Figure 3(a). It is
possible to recognize that accuracy is mainly influenced by 𝑝,
while a weak variation with 𝑡 can be observed. In particular,
for 𝑡 not larger than 1𝐸 − 8, results do not change anymore.
This limit value for 𝑡 is expected to be data dependent.
However, similar sensitivity analyses carried out on real
datasets provided the same results. Even if it is impossible
to extrapolate a general rule, the obtained results seem to
confirm that this value can be assumed as reference to obtain
very stable results. Moreover, the little effect of 𝑡 on the accu-
racy of estimates allows setting a threshold larger than 1𝐸− 8
in order to reduce the computational time. The obtained
results suggest that 𝑡 can be increased up to 1𝐸 − 4 with
negligible effects on the obtained modal parameter estimates
and relevant reduction of computational time, in particular
when the number of measurement channels is large. Above
that value the approximations start inducing major effects
on the estimates. Concerning the effect of 𝑝 on accuracy,

Figure 3(a) shows that the overall accuracy first improves and
then gets worse for increasing values of 𝑝. This is an effect of
the trend of 𝐽

𝑓
versus 𝑝, since 𝐽

𝑠
monotonically and slowly

decreases with increasing values of 𝑝 (even if for a single
mode the 𝐽

𝑠
versus 𝑝 plot could not be monotonic), as shown

in Figure 3(b). This is consistent with the higher robustness
of SOBI to noise with respect to other BSS methods based on
second-order statistics, such as AMUSE [35].This robustness
is the result of the joint diagonalization of several time-shifted
covariance matrices instead of the eigenvalue decomposition
of a single covariance matrix evaluated at a certain time lag.
On the other hand, the trend of 𝐽

𝑓
is probably due to the

fact that the larger the value of 𝑝, the larger the effect of the
disturbance beyond a certain decay level. As a final result, an
optimal setting of 𝑝 able to maximize the overall accuracy of
modal estimates can be obtained from the minimum of the
𝐽
𝑓
+ 𝐽
𝑠
function.

Repeating the sensitivity analysis for different values
of the sampling frequency, in order to reduce or increase
the number of modes in the frequency range of interest,
the trend of the 𝐽

𝑓
+ 𝐽
𝑠
function is kept, but the value

of 𝑝 corresponding to its minimum changes, as expected.
However, when the sampling frequency changes by a factor
of 𝑥, the optimal setting for 𝑝 changes by the same factor.
Attention has been therefore focused on the source associated
with the fundamental mode, which is obviously present in
all the analyses, and on the decay level associated with the
optimal value of 𝑝. The decay level was found to be the same
for different values of the sampling frequency. In particular,
it was in the order of 10% of the maximum amplitude of the
first cycle occurring at 𝜏

𝑘
> 0 (for 𝜏

𝑘
= 0 𝑅

𝑠𝑠
is always equal to

one).Thus, the time to observe a given amplitude decay rather
than the number of samples is responsible for the accuracy of
estimates. This is consistent with the change of the optimal
setting of 𝑝 with the adopted sampling frequency and with
the increasing effect of noise when 𝑝 becomes too large.

The analysis of the decay level associated with the optimal
setting of 𝑝 seems to suggest the following rule for its
evaluation. The optimal value of 𝑝 can be determined in a
couple of iterations by applying SOBI for a generic value of 𝑝
and changing it in a way able to achieve a ratio of about 10%
between the amplitudes of the last (depending on the value
of 𝑝) and the first cycle (at 𝜏

𝑘
> 0) of the source correlation

associated with the fundamental mode (Figure 4).
This rule has been validated through its application to

real datasets. Taking into account the influence of 𝑡 on the
accuracy of modal parameter estimates, a value of 1E-8 has
been adopted in the analyses. The obtained modal identi-
fication results are reported in Table 2 in comparison with
reference estimates. A very good agreement can be observed,
confirming that the proposed rule makes an effective setting
of the analysis parameters able to provide accurate output-
only modal identification results possible.

In order to validate further the proposed rule for the
setting of 𝑝, the real datasets have been analyzed also for
different values of 𝑝. The function 𝐽

𝑓
+ 𝐽
𝑠
versus 𝑝 (Figure 5)

has been evaluated around the estimated optimal value of
𝑝. The reference values of the natural frequencies and mode
shapes are those provided by the SSI method (however,
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Figure 3: Sensitivity of overall accuracy (a) and mode shape accuracy (b) to 𝑝 and 𝑡.

Table 2: Test cases, modal identification results, and comparisons.

Case study Characteristics 𝑙 (𝑓
𝑠
[Hz], 𝑝) Mode number 𝑓SOBI [Hz] 𝑓ref [Hz] 𝜉SOBI [%] 𝜉ref [%] MAC

6-DOF system Simulated data 6 (10, 400)

I 1.51 1.51 0.97 1.00 0.998
II 2.82 2.82 0.73 0.80 0.999
III 3.81 3.81 0.88 0.81 0.999
IV 4.73 4.74 0.81 0.87 0.998

Tower of the Nations
(Naples)

Well-separated
modes 8 (5, 360)

I 0.81 0.81 0.36 0.40 ≈1
II 1.38 1.38 0.97 1.17 ≈1
III 1.66 1.66 0.69 0.63 ≈1

School of Engineering
(Naples)

Closely spaced
modes 12 (10, 400)

I 0.92 0.92 1.23 1.32 ≈1
II 0.99 0.99 1.17 1.02 0.999
III 1.30 1.30 0.58 0.64 ≈1

S. Maria del Carmine Bell
Tower (Naples)

Closely spaced
modes, noisy data 12 (5, 300) I 0.70 0.70 0.96 0.92 ≈1

II 0.76 0.76 0.92 0.83 ≈1
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Figure 4: Illustration of the rule of thumbs for setting of 𝑝.

similar results have been obtained considering as reference
estimates those provided by the FDD method). Figure 5
shows that the proposed rule is able to properly evaluate the
optimal setting of 𝑝 even in the case of real datasets.

The proposed approach for the optimal setting of 𝑝
can easily be automated and used for the development of

SOBI-based automatedOMAprocedures for vibration-based
SHM. It is worth pointing out that the possibility of automati-
cally setting the analysis parameters without any preliminary
calibration is a fundamental requirement for the development
of automated OMA procedures. An effective control of
computational efforts is possible by appropriate setting of t,
taking into account that it negatively affects the accuracy of
modal parameter estimates beyond the limit value of 1𝐸 −
4. Thus, the present paper provides a contribution towards
the development of innovative automated OMA procedures
able to satisfy widely accepted target criteria reported in the
literature [6, 7, 9]. However, automated OMA based on SOBI
is out of the scope of the paper.

4. Conclusions

In the present paper the applicative perspectives of SOBI for
OMA of civil structures have been discussed. Attention has
been focused on SOBI because of its interesting performance,
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Figure 5: Validation of the proposed rule for setting of 𝑝 (𝑡 = 10−8,
real dataset: “School of Engineering in Naples”).

among the BSS methods, in the field of output-only modal
identification and vibration-based SHM. In fact, the moder-
ate complexity and computational demand of the algorithm
and the separation ofmodal contributionsmake it suitable for
automation and integration into SHM systems. In this per-
spective the influence of the JAD parameters on accuracy of
modal estimates and computational time has been analyzed.
The performed sensitivity analyses have made the definition
of rules of thumbs for their optimal setting possible. These
rules have also been validated against real datasets. The
selected real case studies were representative of the different
degree of complexity of modal identification test cases usu-
ally encountered in civil engineering. The good agreement
between the modal property estimates provided by SOBI and
those obtained by well-established OMA techniques, such as
FDD and SSI, confirms SOBI as a valid alternative for output-
onlymodal identification of civil structures.The results of the
analyses reported in this paper have also provided the basis
for the rational development of SOBI-based automatedOMA
procedures able to provide accurate estimates and effective
control of computational efforts. However, the development
of automated OMA procedures based on SOBI is out of the
scope of the paper. It will be the object of future studies.
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