20 research outputs found

    Optimisation de la lyophilisation du jus de pomme en tapis mousse

    Get PDF
    La lyophilisation des produits liquides dans le domaine alimentaire s'étend du jus de fruit aux bactéries lactiques. Le procédé coûte cher à cause de l'utilisation du vide durant un long temps de séchage. Or, une diminution du temps de séchage permet de diminuer le coût du procédé. Le moussage, considéré favorable pour le séchage à air chaud, est ainsi utilisé pour accélérer le procédé de lyophilisation du jus de pomme, pris comme aliment modèle, tout en gardant les qualités sensorielles et nutritionnelles. Cette thèse comprend quatre volets : (i) une caractérisation physique et rhéologique des mousses en déterminant les paramètres de moussage adéquats (choix et concentration des agents moussants, temps de fouettement) pour avoir la stabilité lors de la lyophilisation, (ii) une étude de l'effet du moussage sur la cinétique de lyophilisation (teneur en eau et température tout au long du procédé), (iii) modélisation de la cinétique de lyophilisation par application du réseau de neurones artificiels et optimisation de l'épaisseur d'échantillon pour accroître la capacité de production, et finalement (iv) une étude de la perte de qualité après la lyophilisation et sur la stabilité des produits lyophilisés lors du stockage. Les résultats de cette recherche ont permis d'abord de quantifier les concentrations de méthylcellulose (1%) et blanc d'oeuf (3%) nécessaires pour avoir des mousses stables (minimum de drainage) face à la lyophilisation. Il a été possible de déterminer à partir des études rhéologiques que les mousses les plus stables n'ont pas nécessairement un comportement solide. Un modèle de solidité en fonction de la fraction d'air et de la taille de bulles a été développé à partir des données expérimentales. L'effet du moussage rend la cinétique de lyophilisation plus rapide à la même épaisseur. Cependant, dû à la faible masse volumique des mousses, la capacité de production n'est pas nécessairement plus rapide que dans le cas de lyophilisation traditionnelle. L'application du réseau de neurones artificiels a permis de modéliser avec exactitude la température et la cinétique de séchage durant la lyophilisation des mousses. Une optimisation faite en utilisant ce modèle a montré que l'épaisseur minimale pour augmenter en même temps la cinétique de lyophilisation et la capacité de production, était trop grande pour être réaliste. L'addition d'agent moussant (polysaccharide ou protéine) rend les mousses plus hygroscopiques par rapport au jus de pomme sans moussage mais augmente, par contre, leur température de transition vitreuse. Ainsi les jus de pomme avec moussage sont plus stables thermiquement. Une faible diminution de la qualité sensorielle et nutritionnelle des jus des pommes mousses par rapport aux produits sans moussage a été constatée après le procédé de lyophilisation. Néanmoins, durant l'entreposage à température ambiante, les produits mousses se sont montrés plus stables que ceux sans mousser

    Foam-Mat Freeze-Drying of Blueberry Juice by Using Trehalose-β-Lactoglobulin and Trehalose-Bovine Serum Albumin as Matrices

    Get PDF
    This study aimed to evaluate the effect of pure protein compounds and trehalose incorporated into blueberry juice for foam-mat freeze-drying on the foam and powder properties. Foam-mat freeze-drying (FMFD) of blueberry juice was tested at − 55 °C for 24 h. Matrices used were trehalose + β-lactoglobulin (T3BL1) and trehalose + bovine serum albumin (T3A1) and compared with maltodextrin + whey protein isolate (M3W1). Physicochemical properties of foam and powder, e.g., foam stability, foam density, moisture, rehydration time, color, particle morphology, total phenolic, and anthocyanins (total and individuals), were investigated. T3BL1 and T3A1 had more stable foam than M3W1. However, overrun of T3BL1 and T3A1 foamed were inferior to the M3W1 sample. The M3W1 sample recovered 79% powder (dry weight) and was superior to others. Rehydration time of powdered T3BL1 and T3A1, with bulk densities of 0.55–0.60 g cm−3, was the fastest (34–36 s). The blueberry powders of M3W1 showed more irregular particle size and shape, while the samples with trehalose and pure proteins generated particles of more uniform size with obvious pores. T3BL1 and T3A1 showed less redness (a*) values than the M3W1 product. All samples were considered pure red due to hue values < 90. M3W1 was superior in total phenolic content (TPC) and total monomeric anthocyanins (TMA) compared with both samples made with trehalose + β-lactoglobulin and trehalose+bovine serum albumin. Delphinidin-3-glucoside (Del3Gl) concentration was found to be higher in M3W1. Also, M3W1 had higher cyanidin-3-glucoside (Cyn3Gl) and malvidin-3-glucoside (Mal3Gl) concentration. M3W1 also prevented the degradation of these bioactive compounds better than the other FMFD samples. The use of pure proteins and trehalose as matrices in the FMFD process had little advantage compared with maltodextrin/whey protein isolate. Thus, maltodextrin/whey protein isolate seems an ideal matrix for the manufacture of FMFD blueberry

    Characterization of Apple Juice Foams for Foam-mat Drying Prepared with Egg White Protein and Methylcellulose

    Get PDF
    Intrinsic stability and rheological properties of apple juice foams for foam mat drying were studied. Foams were prepared from clarified apple juice by adding various concentrations of 2 foaming agents of different nature: a protein (egg white at 0.5%, 1%, 2%, and 3% w/w) and a polysaccharide (methylcellulose at 0.1%, 0.2%, 0.5%, 1%, and 2% w/w), and whipping at different times (3, 5, and 7 min). In general, egg white foams were less stable but showed a higher degree of solidity (stronger structures), higher foaming capacity, and smaller bubble average diameter than methylcellulose foams. Foam stability increased with increasing concentrations of either methylcellulose or egg white. Increasing whipping times increased the stability of egg white foams only. Stability parameters (maximum drainage and drainage half-time) were correlated in terms of rheological parameters of the continuous phase (consistency index and apparent viscosity at 30/s, respectively). The correlations (R2= 0.766 and 0.951, respectively) were considered acceptable because they were independent of whipping time and foaming agent nature and concentration. Results on foam rheology obtained by dynamic and vane tests were in agreement, but the latter method was more sensitive. Optimal concentrations to obtain the most solid foams (0.2% methylcellulose and 2% to 3% egg white, respectively) were the same concentrations required for maximum foaming capacity. Based on this observation and previous models, an empirical expression was proposed to predict the degree of solidity (in terms of inverse phase angle and yield stress) only as a function of foam structural properties (air volume fraction and average bubble size). The model proved to be satisfactory to fit experimental results (R2= 0.848 and 0.975, respectively), independently of whipping time, foaming agent nature and concentration.Fil: Raharitsifa, Narindra. Laval University; CanadáFil: Genovese, Diego Bautista. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Ratti, Cristina. Laval University; Canad
    corecore