48 research outputs found

    Global Journalist: How other countries view the 2020 U.S. election

    Get PDF
    This October 29, 2020 episode features interviews by Missouri School of Journalism students in Beverly Horvit's International Reporting class with reporters from around the world about the 2020 presidential campaign. The journalists are all alumni of the Alfred Friendly Press Partners fellowship program or the Hubert Humphrey fellowship program

    Dislocations and vortices in pair density wave superconductors

    Full text link
    With the ground breaking work of the Fulde, Ferell, Larkin, and Ovchinnikov (FFLO), it was realized that superconducting order can also break translational invariance; leading to a phase in which the Cooper pairs develop a coherent periodic spatially oscillating structure. Such pair density wave (PDW) superconductivity has become relevant in a diverse range of systems, including cuprates, organic superconductors, heavy fermion superconductors, cold atoms, and high density quark matter. Here we show that, in addition to charge density wave (CDW) order, there are PDW ground states that induce spin density wave (SDW) order when there is no applied magnetic field. Furthermore, we show that PDW phases support topological defects that combine dislocations in the induced CDW/SDW order with a fractional vortex in the usual superconducting order. These defects provide a mechanism for fluctuation driven non-superconducting CDW/SDW phases and conventional vortices with CDW/SDW order in the core.Comment: 6 pages,1 figure, 1 tabl

    Assessing the Effects of Climate on Host-Parasite Interactions: A Comparative Study of European Birds and Their Parasites

    Get PDF
    [Background] Climate change potentially has important effects on distribution, abundance, transmission and virulence of parasites in wild populations of animals. [Methodology/Principal Finding] Here we analyzed paired information on 89 parasite populations for 24 species of bird hosts some years ago and again in 2010 with an average interval of 10 years. The parasite taxa included protozoa, feather parasites, diptera, ticks, mites and fleas. We investigated whether change in abundance and prevalence of parasites was related to change in body condition, reproduction and population size of hosts. We conducted analyses based on the entire dataset, but also on a restricted dataset with intervals between study years being 5–15 years. Parasite abundance increased over time when restricting the analyses to datasets with an interval of 5–15 years, with no significant effect of changes in temperature at the time of breeding among study sites. Changes in host body condition and clutch size were related to change in temperature between first and second study year. In addition, changes in clutch size, brood size and body condition of hosts were correlated with change in abundance of parasites. Finally, changes in population size of hosts were not significantly related to changes in abundance of parasites or their prevalence. [Conclusions/Significance] Climate change is associated with a general increase in parasite abundance. Variation in laying date depended on locality and was associated with latitude while body condition of hosts was associated with a change in temperature. Because clutch size, brood size and body condition were associated with change in parasitism, these results suggest that parasites, perhaps mediated through the indirect effects of temperature, may affect fecundity and condition of their hosts. The conclusions were particularly in accordance with predictions when the restricted dataset with intervals of 5–15 years was used, suggesting that short intervals may bias findings.The Academy of Finland is acknowledged for a grant to TE (project 8119367) and EK (project 250709). PLP was supported by a research grant (TE_291/2010) offered by the Romanian Ministry of Education and Science. T. Szép received funding from OTKA K69068 and JT from OTKA 75618. JMP was supported by a JAE grant from Consejo Superior de Investigaciones Científicas. SM-JM, FdL-AM, JF, JJS and FV were respectively supported by projects CGL2009-09439, CGL2012-36665, CGL2009- 11445, CGL2010-19233-C03-01 and CGL2008-00562 by the Spanish Ministry of Science and Innovation and FEDER and project EVITAR by the Spanish Ministry of Health. FV was also supported by the European Regional Development Fund. MACT was funded by a predoctoral FPU grant from the Spanish Ministry of Education (AP20043713). PM was supported by grant from the Polish Ministry of Science and Higher Education (project 2P04F07030), and the Foundation for Polish Science

    The NANOGrav 15 yr Data Set: Search for Transverse Polarization Modes in the Gravitational-wave Background

    Get PDF
    \ua9 2024. The Author(s). Published by the American Astronomical Society.Recently we found compelling evidence for a gravitational-wave background with Hellings and Downs (HD) correlations in our 15 yr data set. These correlations describe gravitational waves as predicted by general relativity, which has two transverse polarization modes. However, more general metric theories of gravity can have additional polarization modes, which produce different interpulsar correlations. In this work, we search the NANOGrav 15 yr data set for evidence of a gravitational-wave background with quadrupolar HD and scalar-transverse (ST) correlations. We find that HD correlations are the best fit to the data and no significant evidence in favor of ST correlations. While Bayes factors show strong evidence for a correlated signal, the data does not strongly prefer either correlation signature, with Bayes factors ∼2 when comparing HD to ST correlations, and ∼1 for HD plus ST correlations to HD correlations alone. However, when modeled alongside HD correlations, the amplitude and spectral index posteriors for ST correlations are uninformative, with the HD process accounting for the vast majority of the total signal. Using the optimal statistic, a frequentist technique that focuses on the pulsar-pair cross-correlations, we find median signal-to-noise ratios of 5.0 for HD and 4.6 for ST correlations when fit for separately, and median signal-to-noise ratios of 3.5 for HD and 3.0 for ST correlations when fit for simultaneously. While the signal-to-noise ratios for each of the correlations are comparable, the estimated amplitude and spectral index for HD are a significantly better fit to the total signal, in agreement with our Bayesian analysis

    How to Detect an Astrophysical Nanohertz Gravitational Wave Background

    Get PDF
    \ua9 2023. The Author(s). Published by the American Astronomical Society.Analyses of pulsar timing data have provided evidence for a stochastic gravitational wave background in the nanohertz frequency band. The most plausible source of this background is the superposition of signals from millions of supermassive black hole binaries. The standard statistical techniques used to search for this background and assess its significance make several simplifying assumptions, namely (i) Gaussianity, (ii) isotropy, and most often, (iii) a power-law spectrum. However, a stochastic background from a finite collection of binaries does not exactly satisfy any of these assumptions. To understand the effect of these assumptions, we test standard analysis techniques on a large collection of realistic simulated data sets. The data-set length, observing schedule, and noise levels were chosen to emulate the NANOGrav 15 yr data set. Simulated signals from millions of binaries drawn from models based on the Illustris cosmological hydrodynamical simulation were added to the data. We find that the standard statistical methods perform remarkably well on these simulated data sets, even though their fundamental assumptions are not strictly met. They are able to achieve a confident detection of the background. However, even for a fixed set of astrophysical parameters, different realizations of the universe result in a large variance in the significance and recovered parameters of the background. We also find that the presence of loud individual binaries can bias the spectral recovery of the background if we do not account for them

    Adding Hardware Support to the HotSpot Virtual Machine for Domain Specific Applications

    No full text
    Like real general-purpose processors, Java Virtual Machines (JVMs) need hardware acceleration for computationally intensive applications. JVMs however require that platform independence can be maintained while resorting to hardware acceleration. To this end, we invented a scheme to seamlessly add hardware support to Sun's HotSpot JVM. By means of run-time profiling, we select the most heavily used Java methods for execution in Field Programmable Gate Arrays (FPGA) hardware. Methods running in hardware are designed at compiletime, but the bitstreams are generated at run-time to guarantee platform independence
    corecore