471 research outputs found

    Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries

    Get PDF
    AbstractRecent development of inorganic sulfide solid electrolytes and all-solid-state rechargeable lithium batteries with them is reviewed. Electrical conductivity, electrochemical stability and chemical stability of these sulfide electrolytes are reported. Formation of favorable solid–solid contacts between electrode and electrolyte is important in all-solid-state batteries. Useful techniques to achieving intimate electrode–electrolyte interfaces are proposed. Application of sulfur positive electrode and lithium metal negative electrode with large theoretical capacity to all-solid-state lithium batteries is demonstrated

    Chemical bonding of Ag ions in AgI-based superionic conducting glasses

    Get PDF
    The electronic state of AgI-based superionic conducting glasses was calculated by the DV-Xα cluster method. We have adopted several model clusters with different conduction paths of Ag ions. The electronic state of the similar clusters using Na ions was also calculated for comparison. The net charge of moving cations and the total bond order between the moving cation and the other ions in these model clusters were used for discussion of chemical bonding of the moving cation. The total bond order of the moving Ag ion was decreased with the movement and had a minimum at the middle of the path. The variation of the total bond order of the Ag ion was much smaller than that of the Na ion in any conduction paths. On the other hand, the change of the net charge of the Ag ion with the movement was almost the same as that of the Na ion. These results suggest that the smaller change of the total bond order of the Ag ion should play an important role in the fast ion conduction in AgI-based superionic conducting glasses, rather than the change of the net charge of cations

    Kinetics of Interfacial Lithium-ion Transfer between a Graphite Negative Electrode and a Li₂S-P₂S₅ Glassy Solid Electrolyte

    Get PDF
    All-solid-state lithium-ion batteries that use sulfide solid electrolytes have attracted much attention due to their high safety and wide electrochemical window. In this study, highly oriented pyrolytic graphite (HOPG) and 75Li₂S-25P₂S₅ (mol%) glass were used as a model graphite negative electrode and a sulfide solid electrolyte, respectively. Interfacial lithium-ion transfer between 75Li₂S-25P₂S₅ glass and the HOPG electrode was studied by AC impedance spectroscopy measurements. The activation energy of the interfacial lithium-ion transfer was estimated to be around 37 kJ mol⁻¹, which was much smaller than that at the interface between organic liquid electrolytes and HOPG electrode, indicating that the lithium-ion transfer at the interface between 75Li₂S-25P₂S₅ glass and HOPG electrode proceeded quite rapidly. Furthermore, surface deposition of TiO₂ and surface oxidation on HOPG electrodes were performed using the atomic layer deposition (ALD) method. Interfacial lithium-ion transfer between 75Li₂S-25P₂S₅ glass and ALD-modified-HOPG electrodes was also investigated. The activation energies of the interfacial lithium-ion transfer were slightly higher than that of HOPG, but the resistance of the charge-transfer process was lower, indicating that the affinity of the HOPG electrode for the glass electrolyte was improved by surface modification

    Unique Li deposition behavior in Li₃PS₄ solid electrolyte observed via operando X-ray computed tomography

    Get PDF
    The problem of lithium dendrites must be addressed for practical lithium metal all-solid-state batteries. Herein, three-dimensional morphological changes within Li₃PS₄ electrolyte away from the anode were observed using operando X-ray computed tomography. We revealed that the electronic conduction of decomposition and the electrolyte/void interface cause the lithium deposition within the Li₃PS₄

    Origin of non-exponential relaxation in a crystalline ionic conductor: a multi-dimensional 109Ag NMR study

    Full text link
    The origin of the non-exponential relaxation of silver ions in the crystalline ion conductor Ag7P3S11 is analyzed by comparing appropriate two-time and three-time 109Ag NMR correlation functions. The non-exponentiality is due to a rate distribution, i.e., dynamic heterogeneities, rather than to an intrinsic non-exponentiality. Thus, the data give no evidence for the relevance of correlated back-and-forth jumps on the timescale of the silver relaxation.Comment: 4 pages, 3 figure

    A reversible oxygen redox reaction in bulk-type all-solid-state batteries

    Get PDF
    An all-solid-state lithium battery using inorganic solid electrolytes requires safety assurance and improved energy density, both of which are issues in large-scale applications of lithium-ion batteries. Utilization of high-capacity lithium-excess electrode materials is effective for the further increase in energy density. However, they have never been applied to all-solid-state batteries. Operational difficulty of all-solid-state batteries using them generally lies in the construction of the electrode-electrolyte interface. By the amorphization of Li₂RuO₃ as a lithium-excess model material with Li₂SO₄, here, we have first demonstrated a reversible oxygen redox reaction in all-solid-state batteries. Amorphous nature of the Li₂RuO₃-Li₂SO₄ matrix enables inclusion of active material with high conductivity and ductility for achieving favorable interfaces with charge transfer capabilities, leading to the stable operation of all-solid-state batteries

    Onset of rigidty in glasses: from random to self-organized networks

    Full text link
    We review in this paper the signatures of a new elastic phase that is found in glasses with selected compositions. It is shown that in contrast with random networks, where rigidity percolates at a single threshold, networks that are able to self-organize to avoid stress will remain in an almost stress- free state during a compositional interval, an intermediate phase, that is bounded by a flexible phase and a stressed rigid phase. We report the experimental signatures and describe the theoretical efforts that have been accomplished to characterize the intermediate phase. We illustrate one of the methods used in more detail with the example of Group III chalcogenides and finally suggest further possible experimental signatures of self-organization.Comment: 27 pages, 6 figures, Proceedings of the Conference on Non-Crystalline Materials 10, to appear in Journal of Non-Crystalline Solid
    corecore