1,874 research outputs found
Attack and defence in cellular decision-making: lessons from machine learning
Machine learning algorithms can be fooled by small well-designed adversarial
perturbations. This is reminiscent of cellular decision-making where ligands
(called antagonists) prevent correct signalling, like in early immune
recognition. We draw a formal analogy between neural networks used in machine
learning and models of cellular decision-making (adaptive proofreading). We
apply attacks from machine learning to simple decision-making models, and show
explicitly the correspondence to antagonism by weakly bound ligands. Such
antagonism is absent in more nonlinear models, which inspired us to implement a
biomimetic defence in neural networks filtering out adversarial perturbations.
We then apply a gradient-descent approach from machine learning to different
cellular decision-making models, and we reveal the existence of two regimes
characterized by the presence or absence of a critical point for the gradient.
This critical point causes the strongest antagonists to lie close to the
decision boundary. This is validated in the loss landscapes of robust neural
networks and cellular decision-making models, and observed experimentally for
immune cells. For both regimes, we explain how associated defence mechanisms
shape the geometry of the loss landscape, and why different adversarial attacks
are effective in different regimes. Our work connects evolved cellular
decision-making to machine learning, and motivates the design of a general
theory of adversarial perturbations, both for in vivo and in silico systems
Using Computer-assisted Qualitative Data Analysis Software (CAQDAS) to Re-examine Traditionally Analyzed Data: Expanding our Understanding of the Data and of Ourselves as Scholars
As diverse members of a college of education evaluation committee one of our charges is to support faculty as we document and improve our teaching. Our committee asked faculty to respond to three qualitative questions, documenting ways in which interdepartmental and cross-department conversations are used to promote reflective thinking about our practice. Three of us investigated the use of CAQDAS to provide an additional level of analysis and how we learned more about ourselves as scholars through this collaboration. Our findings include recommendations regarding the use of CAQDAS to support collaborative efforts by diverse scholars
122Outcome of unrelated umbilical cord-blood transplants (UCBT) in pediatric patients: Experience of one center
This item contains two issues of the Take One newsletter: September 8, and 22, 1977.Take One was published every two weeks and focused on short news items and announcements "for the people of University Hospital.
Space--time fluctuations and the spreading of wavepackets
Using a density matrix description in space we study the evolution of
wavepackets in a fluctuating space-time background. We assume that space-time
fluctuations manifest as classical fluctuations of the metric. From the
non-relativistic limit of a non-minimally coupled Klein-Gordon equation we
derive a Schr\"odinger equation with an additive gaussian random potential.
This is transformed into an effective master equation for the density matrix.
The solutions of this master equation allow to study the dynamics of
wavepackets in a fluctuating space-time, depending on the fluctuation scenario.
We show how different scenarios alter the diffusion properties of wavepackets.Comment: 11 page
Visualization of HIV-1 interactions with penile and foreskin epithelia: clues for female-to-male HIV transmission
To gain insight into female-to-male HIV sexual transmission and how male circumcision protects against this mode of transmission, we visualized HIV-1 interactions with foreskin and penile tissues in ex vivo tissue culture and in vivo rhesus macaque models utilizing epifluorescent microscopy. 12 foreskin and 14 cadaveric penile specimens were cultured with R5-tropic photoactivatable (PA)-GFP HIV-1 for 4 or 24 hours. Tissue cryosections were immunofluorescently imaged for epithelial and immune cell markers. Images were analyzed for total virions, proportion of penetrators, depth of virion penetration, as well as immune cell counts and depths in the tissue. We visualized individual PA virions breaching penile epithelial surfaces in the explant and macaque model. Using kernel density estimated probabilities of localizing a virion or immune cell at certain tissue depths revealed that interactions between virions and cells were more likely to occur in the inner foreskin or glans penis (from local or cadaveric donors, respectively). Using statistical models to account for repeated measures and zero-inflated datasets, we found no difference in total virions visualized at 4 hours between inner and outer foreskins from local donors. At 24 hours, there were more virions in inner as compared to outer foreskin (0.0495 +/- 0.0154 and 0.0171 +/- 0.0038 virions/image, p = 0.001). In the cadaveric specimens, we observed more virions in inner foreskin (0.0507 +/- 0.0079 virions/image) than glans tissue (0.0167 +/- 0.0033 virions/image, p<0.001), but a greater proportion was seen penetrating uncircumcised glans tissue (0.0458 +/- 0.0188 vs. 0.0151 +/- 0.0100 virions/image, p = 0.099) and to significantly greater mean depths (29.162 +/- 3.908 vs. 12.466 +/- 2.985 μm). Our in vivo macaque model confirmed that virions can breach penile squamous epithelia in a living model. In summary, these results suggest that the inner foreskin and glans epithelia may be important sites for HIV transmission in uncircumcised men
Thoracic impedance measures tissue characteristics in the vicinity of the electrodes, not intervening lung water: implications for heart failure monitoring
Evaluation of Dynamic Models of Distillation Columns with Emphasis on the Initial Response
The flow dynamics (tray hydraulics) are of key importance for the initial dynamic response of distillation columns. The most important parameters are the liquid holdup, the liquid hydraulic time constant and the vapor constant representing the initial effect of a change in vapor flow on liquid flow. In the paper we present methods for determining these parameters experimentally, and compare the results with estimates from available correlations such as the Francis Weir formula
Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs
This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry as many new approaches to the design of innovative metal-based anticancer drugs are emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy
Aquatic community response to volcanic eruptions on the Ecuadorian Andean flank: evidence from the palaeoecological record
Aquatic ecosystems in the tropical Andes are under increasing pressure from human modification of the landscape (deforestation and dams) and climatic change (increase of extreme events and 1.5 °C on average temperatures are projected for AD 2100). However, the resilience of these ecosystems to perturbations is poorly understood. Here we use a multi-proxy palaeoecological approach to assess the response of aquatic ecosystems to a major mechanism for natural disturbance, volcanic ash deposition. Specifically, we present data from two Neotropical lakes located on the eastern Andean flank of Ecuador. Laguna Pindo (1°27.132′S–78°04.847′W) is a tectonically formed closed basin surrounded by a dense mid-elevation forest, whereas Laguna Baños (0°19.328′S–78°09.175′W) is a glacially formed lake with an inflow and outflow in high Andean Páramo grasslands. In each lake we examined the dynamics of chironomids and other aquatic and semi-aquatic organisms to explore the effect of thick (> 5 cm) volcanic deposits on the aquatic communities in these two systems with different catchment features. In both lakes past volcanic ash deposition was evident from four large tephras dated to c.850 cal year BP (Pindo), and 4600, 3600 and 1500 cal year BP (Baños). Examination of the chironomid and aquatic assemblages before and after the ash depositions revealed no shift in composition at Pindo, but a major change at Baños occurred after the last event around 1500 cal year BP. Chironomids at Baños changed from an assemblage dominated by Pseudochironomus and Polypedilum nubifer-type to Cricotopus/Paratrichocladius type-II, and such a dominance lasted for approximately 380 years. We suggest that, despite potential changes in the water chemistry, the major effect on the chironomid community resulted from the thickness of the tephra being deposited, which acted to shallow the water body beyond a depth threshold. Changes in the aquatic flora and fauna at the base of the trophic chain can promote cascade effects that may deteriorate the ecosystem, especially when already influenced by human activities, such as deforestation and dams, which is frequent in the high Andes
- …
