264 research outputs found

    Rapid Orthotics for CURE Kenya - Mechanical Design and Official Testing of 3D Printed Sockets

    Get PDF
    Rapid Orthotics for Cure Kenya (ROCK) collaborates with CURE, a non-profit orthopedic workshop in Kjabe, Kenya, to implement a 3D printing system for manufacturing custom prosthetics and orthotics. The goal is to reduce the production time and cost for the current transtibial sockets being manufactured in the orthotic workshop to give the patients a way to integrate into society and reduce stigma from their communities. The team designed a system for manufacturing transtibial sockets by converting a scan of the residual limb to a digital file customized by the orthopedic technicians and converted to a file to be 3D printed. The team designed a procedure to ensure the safety of the sockets within the constraints and offsets of the ISO 10328 Standard. The standard requires twelve official tests specifying the type and conditions to be conducted for the Ultimate Strength and Static Proof tests. The team has designed a testing rig that interfaces with the Materials Testing System machine at Messiah University to apply the necessary forces according to the complex geometry outlined in the standard. Additionally, research has determined the optimized 3D printing settings to increase the quality and consistency of the sockets. To smoothly institute the system developed in the orthopedic workshop, the team has developed a Training Manual outlining the step-by-step procedure for the system. Using this system, the team completed all twelve tests with a passing socket result which will contribute to determining the steps for next semester and for the summer site team trip. Funding for this work provided by The Collaboratory for Strategic Partnerships and Applied Research and by The Collaboratory for Strategic Partnerships and Applied Research.https://mosaic.messiah.edu/engr2022/1014/thumbnail.jp

    Rapid Orthotics for Cure Kenya: Mechanical Design and Modeling of 3D Printed Sockets

    Get PDF
    Rapid Orthotics for Cure Kenya (ROCK) works with CURE, a non-profit orthopedic workshop in Kjabe, Kenya, to implement a 3D printing system for manufacturing custom prosthetics and orthotics. The goal is to reduce the production time and cost for the current transtibial sockets being manufactured in the orthotic clinic to give the patients a way to integrate into society and reduce stigma from their communities. The team has developed a transtibial socket for below-the-knee amputees produced by a 3D printing system that converts a scan of the residual limb to a model that takes a third of the time to print versus the current manufacturing method. The current focus of the team is to develop a rigorous testing procedure adhering to the requirements set by the ISO 10328 Standard, an internationally recognized testing method. In order to ensure the safety of the sockets, tests must be run demonstrating that the product can withstand the different forces experienced during the gait cycle. Due to the complex geometry of the applied forces outlined in the ISO 10328, the team has designed a novel testing rig that interfaces with the MTS machine at Messiah University to apply the necessary forces according to the geometry outlined in the standard. Additionally, computer-based simulations are being developed in SolidWorks, a 3D modeling software, to determine how the components will behave under certain loading conditions. This is done to ensure accordance with the 10328 Standard and will be critical in the future for developing necessary cyclic tests.https://mosaic.messiah.edu/engr2021/1013/thumbnail.jp

    From Radio to X-ray: Flares on the dMe Flare Star EV Lacertae

    Full text link
    We present the results of a campaign to observe flares on the M dwarf flare star EV Lacertae over the course of two days in 2001 September, utilizing a combination of radio continuum, optical photometric and spectroscopic, ultraviolet spectroscopic, and X-ray spectroscopic observations, to characterize the multi-wavelength nature of flares from this active, single late-type star. We find flares in every wavelength region in which we observed. In the multi-wavelength context, the start of the intense radio flare is coincident with an impulsive optical U-band flare, to within one minute, and yet there is no signature of an X-ray response. There are other intervals of time where optical flaring and UV flaring is occurring, but these cannot be related to the contemporaneous X-ray flaring: the time-integrated luminosities do not match the instantaneous X-ray flare luminosity, as one would expect for the Neupert effect. We investigate the probability of chance occurrences of flares from disparate wavelength regions producing temporal coincidences, but find that not all the flare associations can be explained by a superposition of flares due to a high flaring rate. We caution against making causal associations of multi-wavelength flares based solely on temporal correlations for high flaring rate stars like EV Lac.Comment: 52 pages, 13 figures, accepted for publication in the Astrophysical Journa

    Blood-Based Bioenergetic Profiling Reflects Differences in Brain Bioenergetics and Metabolism

    Get PDF
    Blood-based bioenergetic profiling provides a minimally invasive assessment of mitochondrial health shown to be related to key features of aging. Previous studies show that blood cells recapitulate mitochondrial alterations in the central nervous system under pathological conditions, including the development of Alzheimer’s disease. In this study of nonhuman primates, we focus on mitochondrial function and bioenergetic capacity assessed by the respirometric profiling of monocytes, platelets, and frontal cortex mitochondria. Our data indicate that differences in the maximal respiratory capacity of brain mitochondria are reflected by CD14+ monocyte maximal respiratory capacity and platelet and monocyte bioenergetic health index. A subset of nonhuman primates also underwent [18F] fluorodeoxyglucose positron emission tomography (FDG-PET) imaging to assess brain glucose metabolism. Our results indicate that platelet respiratory capacity positively correlates to measures of glucose metabolism in multiple brain regions. Altogether, the results of this study provide early evidence that blood-based bioenergetic profiling is related to brain mitochondrial metabolism. While these measures cannot substitute for direct measures of brain metabolism, provided by measures such as FDG-PET, they may have utility as a metabolic biomarker and screening tool to identify individuals exhibiting systemic bioenergetic decline who may therefore be at risk for the development of neurodegenerative diseases

    DESI Survey Validation Spectra Reveal an Increasing Fraction of Recently Quenched Galaxies at z1z\sim1

    Get PDF
    We utilize 17000\sim17000 bright Luminous Red Galaxies (LRGs) from the novel Dark Energy Spectroscopic Instrument Survey Validation spectroscopic sample, leveraging its deep (2.5\sim2.5 hour/galaxy exposure time) spectra to characterize the contribution of recently quenched galaxies to the massive galaxy population at 0.4<z<1.30.4<z<1.3. We use Prospector to infer non-parametric star formation histories and identify a significant population of post-starburst galaxies that have joined the quiescent population within the past 1\sim1 Gyr. The highest redshift subset (277 at z>1z>1) of our sample of recently quenched galaxies represents the largest spectroscopic sample of post-starburst galaxies at that epoch. At 0.4<z<0.80.4<z<0.8, we measure the number density of quiescent LRGs, finding that recently quenched galaxies constitute a growing fraction of the massive galaxy population with increasing lookback time. Finally, we quantify the importance of this population amongst massive (log(M/M)>11.2\mathrm{log}(M_\star/M_\odot)>11.2) LRGs by measuring the fraction of stellar mass each galaxy formed in the Gyr before observation, f1Gyrf_{\mathrm{1 Gyr}}. Although galaxies with f1Gyr>0.1f_{\mathrm{1 Gyr}}>0.1 are rare at z0.4z\sim0.4 (0.5%\lesssim 0.5\% of the population), by z0.8z\sim0.8 they constitute 3%\sim3\% of massive galaxies. Relaxing this threshold, we find that galaxies with f1Gyr>5%f_\mathrm{1 Gyr}>5\% constitute 10%\sim10\% of the massive galaxy population at z0.8z\sim0.8. We also identify a small but significant sample of galaxies at z=1.11.3z=1.1-1.3 that formed with f1Gyr>50%f_{\mathrm{1 Gyr}}>50\%, implying that they may be analogues to high-redshift quiescent galaxies that formed on similar timescales. Future analysis of this unprecedented sample promises to illuminate the physical mechanisms that drive the quenching of massive galaxies after cosmic noon.Comment: Submitted to ApJ Letters after DESI Collaboration Review. 14 pages, 5 figures, comments welcome

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    Persistence of immune response in heterologous COVID vaccination schedules in the Com-COV2 study - a single-blind, randomised trial incorporating mRNA, viral-vector and protein-adjuvant vaccines

    Get PDF
    BACKGROUND: Heterologous COVID vaccine priming schedules are immunogenic and effective. This report aims to understand the persistence of immune response to the viral vectored, mRNA and protein-based COVID-19 vaccine platforms used in homologous and heterologous priming combinations, which will inform the choice of vaccine platform in future vaccine development. METHODS: Com-COV2 was a single-blinded trial in which adults ≥50 years, previously immunised with single dose 'ChAd' (ChAdOx1 nCoV-19, AZD1222, Vaxzevria, Astrazeneca) or 'BNT' (BNT162b2, tozinameran, Comirnaty, Pfizer/BioNTech), were randomised 1:1:1 to receive a second dose 8-12 weeks later with either the homologous vaccine, or 'Mod' (mRNA-1273, Spikevax, Moderna) or 'NVX' (NVX-CoV2373, Nuvaxovid, Novavax). Immunological follow-up and the secondary objective of safety monitoring were performed over nine months. Analyses of antibody and cellular assays were performed on an intention-to-treat population without evidence of COVID-19 infection at baseline or for the trial duration. FINDINGS: In April/May 2021, 1072 participants were enrolled at a median of 9.4 weeks after receipt of a single dose of ChAd (N= 540, 45% female) or BNT (N=532, 39% female) as part of the national vaccination programme. In ChAd-primed participants, ChAd/Mod had the highest anti-spike IgG from day 28 through to 6 months, although the heterologous vs homologous geometric mean ratio (GMR) dropped from 9.7 (95%CI: 8.2,11.5) at D28 to 6.2 (95%CI: 5.0, 7.7) at D196. The heterologous/homologous GMR for ChAd/NVX similarly dropped from 3.0 (95%CI:2.5-3.5) to 2.4 (95%CI:1.9-3.0). In BNT-primed participants, decay was similar between heterologous and homologous schedules with BNT/Mod inducing the highest anti-spike IgG for the duration of follow-up. The aGMR for BNT/Mod compared with BNT/BNT increased from 1.36 (95%CI: 1.17, 1.58) at D28 to 1.52 (95%CI: 1.21, 1.90) at D196, whilst for BNT/NVX this aGMR was 0.55 (95%CI: 0.47, 0.64) at day 28 and 0.62 (95%CI: 0.49, 0.78) at day 196. Heterologous ChAd-primed schedules produced and maintained the largest T-cell responses until D196. Immunisation with BNT/NVX generated a qualitatively different antibody response to BNT/BNT, with the total IgG significantly lower than BNT/BNT during all follow-up time points, but similar levels of neutralising antibodies. INTERPRETATION: Heterologous ChAd-primed schedules remain more immunogenic over time in comparison to ChAd/ChAd. BNT-primed schedules with a second dose of either mRNA vaccine also remain more immunogenic over time in comparison to BNT/NVX. The emerging data on mixed schedules using the novel vaccine platforms deployed in the COVID-19 pandemic, suggest that heterologous priming schedules might be considered as a viable option sooner in future pandemics. ISRCTN: 27841311 EudraCT:2021-001275-16 FUNDING: UK Vaccine Task Force (VTF), Coalition for Epidemic Preparedness Innovations (CEPI) and National Institute for Health and Carte Research (NIHR). NVX was supplied for trial use by Novavax, Inc
    corecore