19 research outputs found

    Physiological Response and Tissue Damage Following Different Depths of Impact in a Rodent Model of Mild Traumatic Brain Injury

    Get PDF
    Mild traumatic brain injury (mTBI) is a serious public health concern that can result in significant neurological and behavioral deficit. mTBI results from impact to the head and can be repetitive in nature, especially in sports and domestic violence cases. Our laboratory studies the effects of repetitive mTBI on risky choice behavior in rodents using a closed-head controlled cortical impact (CH-CCI) model of injury and a well-established probabilistic discounting task that assesses risk-based decision-making behavior. We have recently found that females, but not males, display transient increases in risky choice behavior following three CH-CI’s delivered at 5.5m/s velocity and 2.5 mm impact depth. These findings suggest that our injury parameters may produce marginally threshold influences on behavioral outcomes that do not allow observation of the extent of repetitive mTBI-induced effects and have prompted us to explore expansion of our model to include greater depths of injury. In the present work we subjected rats to a series of three fixed velocity impacts at depths of 2.5mm, 3.0mm, or 3.5mm. The goal was to compare physical manifestations of injury in male and female rats following different depths of injury. The survival rate, righting reflex time, skull injury observations, animal weights, and histological markers of tissue damage were evaluated post-injury. Our hypothesis was that these indices of injury would be more prominent as injury depth increased

    Examining Levels of Catecholamine Neurotransmitter Regulatory Proteins Within the Prefrontal Cortex of Rodents Following Traumatic Brain Injury

    Get PDF
    Traumatic brain injury (TBI) resulting from impact to the head can cause long lasting impairments of cognitive processes that lead to increased risk-taking behavior in clinical populations. Our laboratory has recently shown that female, but not age-matched male, rats increase preference for risky choices after multiple experimentally-induced mild TBI’s. Our overarching goal is to understand the neural mechanisms underlying TBI-induced increases in risk-taking behavior. The prefrontal cortex (PFC) plays a prominent role in risk-based decision making. Sub[1]regions of the PFC include the medial PFC (mPFC), the orbitofrontal cortex (OFC), and the anterior cingulate cortex (ACC), and these sub[1]regions play specific roles in decision-making processes. Catecholamine neurotransmitter circuits, such as the dopamine (DA) and norepinephrine (NE) systems, project to the PFC and modulate the PFC’s control over executive functions. Previous studies have demonstrated that both dopamine (DA) and norepinephrine (NE) transmitter levels are increased in the PFC immediately following TBI, which is then followed by a persistent hypo-catecholaminergic state. These results suggest that an imbalance of catecholamine levels within the PFC may underlie aberrant decision-making behavior following TBI; however, it is not presently known what processes contribute to TBI-induced catecholamine imbalance. Here we examined how levels of catecholamine neurotransmitter regulatory proteins responsible for packaging (VMAT2) and degrading (COMT and MAO) are altered to explain chronic decreases in DA and NE levels observed in the PFC following TBI. Age-matched adult male and female Long Evans rats (n=6-8) were exposed to either a single or a series of three closed head controlled cortical impact (CH-CCI) injuries over the course of one week. Rats were sacrificed and brain tissue (mPFC, OFC, and ACC) were collected and standard western blotting protocols were used to measure the levels of VMAT2, COMT, and MAO in each sub-region

    Repetitive Mild Traumatic Brain Injury Impairs Performance in a Rodent Assay of Cognitive Flexibility

    Get PDF
    Mild traumatic brain injury (mTBI) occurs in almost 80% of the 3 million reported cases of TBI-related emergency department visits each year in the United States. The majority of mTBIs, sometimes classified as concussions, are due to sports-related activities and typically occur repeatedly over the course of an athlete’s career. mTBI symptoms are generally classified as either somatic or neuropsychiatric/cognitive in nature and include impairments in prefrontal cortex mediated functions, including attention, memory, processing speed, reaction times, problem solving, and cognitive flexibility. To date, there remains a major gap in our understanding of the behavioral manifestations, underlying neurobiology, and treatment of mTBI. An even greater gap exists in our understanding of the consequences of repeated mTBI incidents. The goal of the present study was to examine the effects of repetitive mTBI within a rodent assay of cognitive flexibility. Rats were exposed to a series of three closed head injuries (controlled cortical impact model) within a week prior to performing an automated strategy shifting task, which required rats to learn and shift strategies according to changing task demands. Rats initially acquired a visual cue strategy in which a light illuminated above one of two possible levers (left or right) indicated the correct response for reward. Twenty-four hours after initial acquisition, rats again performed the task using the visual cue strategy followed by a series of strategy shifting and reversal learning challenges. Repetitive mTBI reduced throughput scores, a performance index that blends accuracy and response speed, and increased reaction times within the task. These results indicate that performance and task efficiency in an operant test of cognitive flexibility are impaired after repetitive mTBI. As such, this model presents a useful approach for further investigating the behavioral deficits and potential treatment strategies for patients who have experienced multiple mTBI insults

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Tetrahydrocarbazole-Based Serotonin Reuptake Inhibitor/Dopamine D2 Partial Agonists for the Potential Treatment of Schizophrenia

    No full text
    A 5-fluoro-tetrahydrocarbazole serotonin reuptake inhibitor (SRI) building block was combined with a variety of linkers and dopamine D2 receptor ligands in an attempt to identify potent D2 partial agonist/SRI molecules for treatment of schizophrenia. This approach has the potential to treat a broader range of symptoms compared to existing therapies. Selected compounds in this series demonstrate high affinity for both targets and D2 partial agonism in cell-based and in vivo assays

    WS-50030 [7-{4-[3-(1H-Inden-3-Yl)Propyl]Piperazin-1-Yl}-1,3-Benzoxazol- 2(3H)-One]a Novel Dopamine D2 Receptor Partial Agonist/Serotonin Reuptake Inhibitor with Preclinical Antipsychotic-Like and Antidepressant-Like Activity

    No full text
    The preclinical characterization of WS-50030 [7-{4-[3-(1Hinden-3-yl)propyl] piperazin-1-yl}-1,3-benzoxazol-2(3H)-one] is described. In vitro binding and functional studies revealed highest affinity to the D2 receptor (D2L Ki, 4.0 nM) and serotonin transporter (Ki, 7.1 nM), potent D2 partial agonist activity (EC50, 0.38 nM; Emax, 30%), and complete block of the serotonin transporter (IC50, 56.4 nM). Consistent with this in vitro profile, WS-50030 (10 mg/kg/day, 21 days) significantly increased extracellular 5-HT in the rat medial prefrontal cortex, short-term WS-50030 treatment blocked apomorphine-induced climbing (ID50, 0.51 mg/kg) in a dose range that produced minimal catalepsy in mice and induced low levels of contralateral rotation in rats with unilateral substantia nigra 6-hydroxydopamine lesions (10 mg/kg i.p.), a behavioral profile similar to that of the D2 partial agonist aripiprazole. In a rat model predictive of antipsychotic-like activity, WS-50030 and aripiprazole reduced conditioned avoidance responding by 42 and 55% at 10 mg/kg, respectively. Despite aripiprazole\u27s reported lack of effect on serotonin transporters, long-term treatment with aripiprazole or WS-50030 reversed olfactory bulbectomy-induced hyperactivity at doses that did not reduce activity in sham-operated rats, indicating antidepressant-like activity for both compounds. Despite possessing serotonin reuptake inhibitory activity in addition to D2 receptor partial agonism, WS-50030 displays activity in preclinical models predictive of antipsychotic- and antidepressant efficacy similar to aripiprazole, suggesting potential efficacy of WS-50030 versus positive and negative symptoms of schizophrenia, comorbid mood symptoms, bipolar disorder, major depressive disorder, and treatment-resistant depression. Furthermore, WS-50030 provides a tool to further explore how combining these mechanisms might differentiate from other antipsychotics or antidepressants
    corecore