1,360 research outputs found

    A Multi-signal Variant for the GPU-based Parallelization of Growing Self-Organizing Networks

    Full text link
    Among the many possible approaches for the parallelization of self-organizing networks, and in particular of growing self-organizing networks, perhaps the most common one is producing an optimized, parallel implementation of the standard sequential algorithms reported in the literature. In this paper we explore an alternative approach, based on a new algorithm variant specifically designed to match the features of the large-scale, fine-grained parallelism of GPUs, in which multiple input signals are processed at once. Comparative tests have been performed, using both parallel and sequential implementations of the new algorithm variant, in particular for a growing self-organizing network that reconstructs surfaces from point clouds. The experimental results show that this approach allows harnessing in a more effective way the intrinsic parallelism that the self-organizing networks algorithms seem intuitively to suggest, obtaining better performances even with networks of smaller size.Comment: 17 page

    Pressure-dependent EPANET extension

    Get PDF
    In water distribution systems (WDSs), the available flow at a demand node is dependent on the pressure at that node. When a network is lacking in pressure, not all consumer demands will be met in full. In this context, the assumption that all demands are fully satisfied regardless of the pressure in the system becomes unreasonable and represents the main limitation of the conventional demand driven analysis (DDA) approach to WDS modelling. A realistic depiction of the network performance can only be attained by considering demands to be pressure dependent. This paper presents an extension of the renowned DDA based hydraulic simulator EPANET 2 to incorporate pressure-dependent demands. This extension is termed “EPANET-PDX” (pressure-dependent extension) herein. The utilization of a continuous nodal pressure-flow function coupled with a line search and backtracking procedure greatly enhance the algorithm’s convergence rate and robustness. Simulations of real life networks consisting of multiple sources, pipes, valves and pumps were successfully executed and results are presented herein. Excellent modelling performance was achieved for analysing both normal and pressure deficient conditions of the WDSs. Detailed computational efficiency results of EPANET-PDX with reference to EPANET 2 are included as well

    Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    Get PDF
    <div><p>Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway <i>i</i>.<i>e</i>., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times <i>vs</i>. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation.</p></div

    Genetic Isolation between the Western and Eastern Pacific Populations of Pronghorn Spiny Lobster Panulirus penicillatus

    Get PDF
    The pronghorn spiny lobster, Panulirus penicillatus, is a circumtropical species which has the widest global distribution among all the species of spiny lobster, ranging throughout the entire Indo-Pacific region. Partial nucleotide sequences of mitochondrial DNA COI (1,142–1,207 bp) and 16S rDNA (535–546 bp) regions were determined for adult and phyllosoma larval samples collected from the Eastern Pacific (EP)(Galápagos Islands and its adjacent water), Central Pacific (CP)(Hawaii and Tuamotu) and the Western Pacific (WP)(Japan, Indonesia, Fiji, New Caledonia and Australia). Phylogenetic analyses revealed two distinct large clades corresponding to the geographic origin of samples (EP and CP+WP). No haplotype was shared between the two regional samples, and average nucleotide sequence divergence (Kimura's two parameter distance) between EP and CP+WP samples was 3.8±0.5% for COI and 1.0±0.4% for 16S rDNA, both of which were much larger than those within samples. The present results indicate that the Pacific population of the pronghorn spiny lobster is subdivided into two distinct populations (Eastern Pacific and Central to Western Pacific), with no gene flow between them. Although the pronghorn spiny lobster have long-lived teleplanic larvae, the vast expanse of Pacific Ocean with no islands and no shallow substrate which is known as the East Pacific Barrier appears to have isolated these two populations for a long time (c.a. 1MY)

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures

    A global perspective on marine photosynthetic picoeukaryote community structure

    Get PDF
    A central goal in ecology is to understand the factors affecting the temporal dynamics and spatial distribution of microorganisms and the underlying processes causing differences in community structure and composition. However, little is known in this respect for photosynthetic picoeukaryotes (PPEs), algae that are now recognised as major players in marine CO2 fixation. Here, we analysed dot blot hybridisation and cloning–sequencing data, using the plastid-encoded 16S rRNA gene, from seven research cruises that encompassed all four ocean biomes. We provide insights into global abundance, α- and β-diversity distribution and the environmental factors shaping PPE community structure and composition. At the class level, the most commonly encountered PPEs were Prymnesiophyceae and Chrysophyceae. These taxa displayed complementary distribution patterns, with peak abundances of Prymnesiophyceae and Chrysophyceae in waters of high (25:1) or low (12:1) nitrogen:phosphorus (N:P) ratio, respectively. Significant differences in phylogenetic composition of PPEs were demonstrated for higher taxonomic levels between ocean basins, using Unifrac analyses of clone library sequence data. Differences in composition were generally greater between basins (interbasins) than within a basin (intrabasin). These differences were primarily linked to taxonomic variation in the composition of Prymnesiophyceae and Prasinophyceae whereas Chrysophyceae were phylogenetically similar in all libraries. These data provide better knowledge of PPE community structure across the world ocean and are crucial in assessing their evolution and contribution to CO2 fixation, especially in the context of global climate change

    Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism.

    Get PDF
    Most differentiated cells convert glucose to pyruvate in the cytosol through glycolysis, followed by pyruvate oxidation in the mitochondria. These processes are linked by the mitochondrial pyruvate carrier (MPC), which is required for efficient mitochondrial pyruvate uptake. In contrast, proliferative cells, including many cancer and stem cells, perform glycolysis robustly but limit fractional mitochondrial pyruvate oxidation. We sought to understand the role this transition from glycolysis to pyruvate oxidation plays in stem cell maintenance and differentiation. Loss of the MPC in Lgr5-EGFP-positive stem cells, or treatment of intestinal organoids with an MPC inhibitor, increases proliferation and expands the stem cell compartment. Similarly, genetic deletion of the MPC in Drosophila intestinal stem cells also increases proliferation, whereas MPC overexpression suppresses stem cell proliferation. These data demonstrate that limiting mitochondrial pyruvate metabolism is necessary and sufficient to maintain the proliferation of intestinal stem cells

    Acylsucrose-Producing Tomato Plants Forces Bemisia tabaci to Shift Its Preferred Settling and Feeding Site

    Get PDF
    [Background] The whitefly Bemisia tabaci (Genn.) causes dramatic damage to plants by transmitting yield-limiting virus diseases. Previous studies proved that the tomato breeding line ABL 14-8 was resistant to B. tabaci, the vector of tomato yellow leaf curl disease (TYLCD). This resistance is based on the presence of type IV glandular trichomes and acylsucrose production. These trichomes deter settling and probing of B. tabaci in ABL 14-8, which reduces primary and secondary spread of TYLCD.[Methodology/Principal Findings] Whitefly settlement preference was evaluated on the adaxial and abaxial leaf surfaces of nearly-isogenic tomato lines with and without B. tabaci-resistance traits, 'ABL 14-8 and Moneymaker' respectively, under non-choice and free-choice conditions. In addition, the Electrical Penetration Graph technique was used to study probing and feeding activities of B. tabaci on the adaxial and abaxial leaf surfaces of the same genotypes. B. tabaci preferred to settle on the abaxial than on the adaxial surface of 'Moneymaker' leaves, whereas no such preference was observed on ABL 14-8 tomato plants at the ten-leaf growth stage. Furthermore, B. tabaci preferred to feed on the abaxial than on the adaxial leaf surface of 'Moneymarker' susceptible tomato plants as shown by a higher number of sustained phloem feeding ingestion events and a shorter time to reach the phloem. However, B. tabaci standard probing and feeding behavior patterns were altered in ABL 14-8 plants and whiteflies were unable to feed from the phloem and spent more time in non-probing activities when exposed to the abaxial leaf surface.[Conclusions/Significance] The distorted behavior of B. tabaci on ABL 14-8 protects tomato plants from the transmission of phloem-restricted viruses such as Tomato yellow leaf curl virus (TYLCV), and forces whiteflies to feed on the adaxial side of leaves where they feed less efficiently and become more vulnerable to natural enemies. © 2012 Rodriguez-Lopez et al.Ministerio de Ciencia e Innovación Spain (co-financed by FEDER) projects: AGL2007-66760-C02-02/AGR, AGL2007-66399-CO3-02/AGR, and AGL2010-22287-C02-01/AGR, AGL2010-22287-C02-01/AGR Consejería de Innovación y Ciencia, Junta de Andalucía, Spain (co-financed by FEDER-FSE) projects: AGR-214 and AGR-129Peer Reviewe

    Lateral variability of ichnological content in muddy contourites: Weak bottom currents affecting organisms’ behavior

    Get PDF
    Although bioturbation is commonly recognized in contourites, only a few studies have analyzed the ichnological content of these deposits in detail. These studies have mainly focused on meso-scale bigradational sequence (a coarsening upward followed by a fining-upward sequence resulting from variations in current velocity). Here we present data from gravitational cores collected along the NW Iberian Margin showing systematic variation in ichnological content across proximal to distal depocenters within a large-scale elongated contourite drift. Data demonstrate that tracemakers’ behavior varies depending on the distance relative to the bottom current core. Trace fossils are already known to be a useful tool for studying of contouritic deposits and are even used as criterion for differentiating associated facies (e.g., turbidites, debrites), though not without controversy. We propose a mechanism by which the distance to the bottom current core exerts tangible influence on specific macro-benthic tracemaker communities in contourite deposits. This parameter itself reflects other bottom current features, such as hydrodynamic energy, grain size, nutrient transport, etc. Ichnological analysis can thus resolve cryptic features of contourite drift depositional settings.The contribution and research by JD was funded through the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 792314 (ICON-SE). The research of FJR-T was funded by project CGL2015-66835-P (Secretaría de Estado de Investigacion, Desarrollo e Innovacion, Spain), Research Group RNM-178 (Junta de Andalucía), and Scientific Excellence Unit UCE-2016- 05 (Universidad de Granada). AM’s research is funded by the I2C program of the Xunta de Galicia Postdoctoral programme (ED481B 2016/029-0). The research was conducted as part of “The Drifters Research Group” (RHUL) and “Ichnology and Palaeoenvironment Research Group” (UGR) programs
    corecore