30 research outputs found

    Living on borrowed time – Amazonian trees use decade‐old storage carbon to survive for months after complete stem girdling

    Get PDF
    Nonstructural carbon (NSC) reserves act as buffers to sustain tree activity during periods when carbon (C) assimilation does not meet C demand, but little is known about their age and accessibility; we designed a controlled girdling experiment in the Amazon to study tree survival on NSC reserves. We used bomb-radiocarbon (14C) to monitor the time elapsed between C fixation and release (‘age’ of substrates). We simultaneously monitored how the mobilization of reserve C affected δ13CO2. Six ungirdled control trees relied almost exclusively on recent assimilates throughout the 17 months of measurement. The Δ14C of CO2 emitted from the six girdled stems increased significantly over time after girdling, indicating substantial remobilization of storage NSC fixed up to 13–14 yr previously. This remobilization was not accompanied by a consistent change in observed δ13CO2. These trees have access to storage pools integrating C accumulated over more than a decade. Remobilization follows a very clear reverse chronological mobilization with younger reserve pools being mobilized first. The lack of a shift in the δ13CO2 might indicate a constant contribution of starch hydrolysis to the soluble sugar pool even outside pronounced stress periods (regular mixing). © 2018 The Authors. New Phytologist © 2018 New Phytologist Trus

    The dyslexia susceptibility KIAA0319

    No full text

    Testing for population differences in evolutionary responses to pesticide pollution in brown trout (Salmo trutta).

    Get PDF
    Pesticides are often toxic to nontarget organisms, especially to those living in rivers that drain agricultural land. The brown trout (Salmo trutta) is a keystone species in many such rivers, and natural populations have hence been chronically exposed to pesticides over multiple generations. The introduction of pesticides decades ago could have induced evolutionary responses within these populations. Such a response would be predicted to reduce the toxicity over time but also deplete any additive genetic variance for the tolerance to the pesticides. If so, populations are now expected to differ in their susceptibility and in the variance for the tolerance depending on the pesticides they have been exposed to. We sampled breeders from seven natural populations that differ in their habitats and that show significant genetic differentiation. We stripped them for their gametes and produced 118 families by in vitro fertilization. We then raised 20 embryos per family singly in experimentally controlled conditions and exposed them to one of two ecologically relevant concentrations of either the herbicide S-metolachlor or the insecticide diazinon. Both pesticides affected embryo and larval development at all concentrations. We found no statistically significant additive genetic variance for tolerance to these stressors within or between populations. Tolerance to the pesticides could also not be linked to variation in carotenoid content of the eggs. However, pesticide tolerance was linked to egg size, with smaller eggs being more tolerant to the pesticides than larger eggs. We conclude that an evolutionary response to these pesticides is currently unlikely and that (a) continuous selection in the past has either depleted genetic variance in all the populations we studied or (b) that exposure to the pesticides never induced an evolutionary response. The observed toxicity selects against large eggs that are typically spawned by larger and older females
    corecore