90 research outputs found

    Essential and checkpoint functions of budding yeast ATM and ATR during meiotic prophase are facilitated by differential phosphorylation of a meiotic adaptor protein, Hop1

    Get PDF
    A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis. Phosphorylation at the serine 298 (S298) promotes stable Hop1-Mek1 interaction on chromosomes following the initial phospho-T318 mediated Mek1 recruitment. In the absence of Dmc1, the phospho-S298 also promotes Mek1 hyper-activation necessary for implementing meiotic checkpoint arrest. Taking these observations together, we propose that the Hop1 phospho-T318 and phospho-S298 constitute key components of the Tel1/Mec1- based meiotic recombination surveillance (MRS) network and facilitate effective coupling of meiotic recombination and progression during both unperturbed and challenged meiosis

    Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery

    Get PDF
    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks

    The ROSAT International X-ray/Optical Survey (RIXOS): source catalogue

    Get PDF
    We describe the ROSAT International X-ray/Optical Survey (RIXOS), a medium-sensitivity survey and optical identification of X-ray sources discovered in ROSAT high Galactic latitude fields (|b|>28°) and observed with the Position Sensitive Proportional Counter (PSPC) detector. The survey made use of the central 17 arcmin of each ROSAT field. A flux limit of 3×10−14 erg cm−2 s−1 (0.5–2 keV) was adopted for the survey, and a minimum exposure time of 8000 s was required for qualifying ROSAT observations. X-ray sources in the survey are therefore substantially above the detection threshold of each field used, and many contain enough counts to allow the X-ray spectral slope to be estimated. Spectroscopic observations of potential counterparts were obtained of all sources down to the survey limit in 64 fields, totalling a sky area of 15.77 deg2. Positive optical identifications are made for 94 per cent of the 296 sources thus examined. A further 18 fields (4.44 deg2), containing 105 sources above the 3×10−14 erg cm−2 s−1 survey limit, are completely optically identified to a higher flux of 8×10−14 erg cm−2 s−1 (0.5–2 keV). Optical spectroscopic data are supplemented by deep CCD imaging of many sources to reveal the morphology of the optical counterparts, and objects too faint to register on Sky Survey plates. The faintest optical counterparts have R∼22. This paper describes the survey method, and presents a catalogue of the RIXOS sources and their optical identifications. Finding charts based on Sky Survey data are given for each source, supplemented by CCD imaging where necessary

    Genome-Wide Survey and Expression Profiling of CCCH-Zinc Finger Family Reveals a Functional Module in Macrophage Activation

    Get PDF
    Previously, we have identified a novel CCCH zinc finger protein family as negative regulators of macrophage activation. To gain an overall insight into the entire CCCH zinc finger gene family and to evaluate their potential role in macrophage activation, here we performed a genome-wide survey of CCCH zinc finger genes in mouse and human. Totally 58 CCCH zinc finger genes in mouse and 55 in human were identified and most of them have not been reported previously. Phylogenetic analysis revealed that the mouse CCCH family was divided into 6 groups. Meanwhile, we employed quantitative real-time PCR to profile their tissue expression patterns in adult mice. Clustering analysis showed that most of CCCH genes were broadly expressed in all of tissues examined with various levels. Interestingly, several CCCH genes Mbnl3, Zfp36l2, Zfp36, Zc3h12a, Zc3h12d, Zc3h7a and Leng9 were enriched in macrophage-related organs such as thymus, spleen, lung, intestine and adipose. Consistently, a comprehensive assessment of changes in expression of the 58 members of the mouse CCCH family during macrophage activation also revealed that these CCCH zinc finger genes were associated with the activation of bone marrow-derived macrophages by lipopolysaccharide. Taken together, this study not only identified a functional module of CCCH zinc finger genes in the regulation of macrophage activation but also provided the framework for future studies to dissect the function of this emerging gene family

    Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells

    Get PDF
    available in PMC 2011 November 01.Cellular RNA levels are determined by the interplay of RNA production, processing and degradation. However, because most studies of RNA regulation do not distinguish the separate contributions of these processes, little is known about how they are temporally integrated. Here we combine metabolic labeling of RNA at high temporal resolution with advanced RNA quantification and computational modeling to estimate RNA transcription and degradation rates during the response of mouse dendritic cells to lipopolysaccharide. We find that changes in transcription rates determine the majority of temporal changes in RNA levels, but that changes in degradation rates are important for shaping sharp 'peaked' responses. We used sequencing of the newly transcribed RNA population to estimate temporally constant RNA processing and degradation rates genome wide. Degradation rates vary significantly between genes and contribute to the observed differences in the dynamic response. Certain transcripts, including those encoding cytokines and transcription factors, mature faster. Our study provides a quantitative approach to study the integrative process of RNA regulation.Human Frontier Science Program (Strasbourg, France)Howard Hughes Medical InstituteBurroughs Wellcome Fund (Career Award at the Scientific Interface

    Pch2 Acts through Xrs2 and Tel1/ATM to Modulate Interhomolog Bias and Checkpoint Function during Meiosis

    Get PDF
    Proper segregation of chromosomes during meiosis requires the formation and repair of double-strand breaks (DSBs) to form crossovers. Repair is biased toward using the homolog as a substrate rather than the sister chromatid. Pch2 is a conserved member of the AAA+-ATPase family of proteins and is implicated in a wide range of meiosis-specific processes including the recombination checkpoint, maturation of the chromosome axis, crossover control, and synapsis. We demonstrate a role for Pch2 in promoting and regulating interhomolog bias and the meiotic recombination checkpoint in response to unprocessed DSBs through the activation of axial proteins Hop1 and Mek1 in budding yeast. We show that Pch2 physically interacts with the putative BRCT repeats in the N-terminal region of Xrs2, a member of the MRX complex that acts at sites of unprocessed DSBs. Pch2, Xrs2, and the ATM ortholog Tel1 function in the same pathway leading to the phosphorylation of Hop1, independent of Rad17 and the ATR ortholog Mec1, which respond to the presence of single-stranded DNA. An N-terminal deletion of Xrs2 recapitulates the pch2Δ phenotypes for signaling unresected breaks. We propose that interaction with Xrs2 may enable Pch2 to remodel chromosome structure adjacent to the site of a DSB and thereby promote accessibility of Hop1 to the Tel1 kinase. In addition, Xrs2, like Pch2, is required for checkpoint-mediated delay conferred by the failure to synapse chromosomes

    Predictors of adherence to antiretroviral therapy among HIV-infected persons: a prospective study in Southwest Ethiopia

    Get PDF
    BACKGROUND: The devastating impact of AIDS in the world especially in sub-Saharan Africa has led to an unprecedented global effort to ensure access to antiretroviral (ARV) drugs. Given that medication-taking behavior can immensely affect an individual's response; ART adherence is now widely recognized as an 'Achilles heel' for the successful outcome. The present study was undertaken to investigate the rate and predictors of adherence to antiretroviral therapy among HIV-infected persons in southwest Ethiopia. METHODS: The study was conducted in the antiretroviral therapy unit of Jimma University Specialized Hospital. A prospective study was undertaken on a total of 400 HIV infected person. Data were collected using a pre-tested interviewer-administered structured questionnaire at first month (M0) and third month (M3) follow up visits. RESULTS: A total of 400 and 383 patients at baseline (M0) and at follow up visit (M3) respectively were interviewed. Self-reported dose adherence in the study area was 94.3%. The rate considering the combined indicator (dose, time and food) was 75.7%. Within a three month follow up period, dose adherence decreased by 2% and overall adherence rate decreased by more than 3%. Adherence was common in those patients who have a social support (OR, 1.82, 95%CI, 1.04, 3.21). Patients who were not depressed were two times more likely to be adherent than those who were depressed (OR, 2.13, 95%CI, 1.18, 3.81). However, at the follow up visit, social support (OR, 2.42, 95%CI, 1.29, 4.55) and the use of memory aids (OR, 3.29, 95%CI, 1.44, 7.51) were found to be independent predictors of adherence. The principal reasons reported for skipping doses in this study were simply forgetting, feeling sick or ill, being busy and running out of medication in more than 75% of the cases. CONCLUSION: The self reported adherence rate was high in the study area. The study showed that adherence is a dynamic process which changes overtime and cannot reliably be predicted by a few patient characteristics that are assumed to vary with time. Adherence is a process, not a single event, and adherence support should be integrated into regular clinical follow up

    Microplastic-Associated Biofilms: A Comparison of Freshwater and Marine Environments

    Get PDF
    Microplastics (<5 mm particles) occur within both engineered and natural freshwater ecosystems, including wastewater treatment plants, lakes, rivers, and estuaries. While a significant proportion of microplastic pollution is likely sequestered within freshwater environments, these habitats also constitute an important conduit of microscopic polymer particles to oceans worldwide. The quantity of aquatic microplastic waste is predicted to dramatically increase over the next decade, but the fate and biological implications of this pollution are still poorly understood. A growing body of research has aimed to characterize the formation, composition, and spatiotemporal distribution of microplastic-associated (“plastisphere”) microbial biofilms. Plastisphere microorganisms have been suggested to play significant roles in pathogen transfer, modulation of particle buoyancy, and biodegradation of plastic polymers and co-contaminants, yet investigation of these topics within freshwater environments is at a very early stage. Here, what is known about marine plastisphere assemblages is systematically compared with up-to-date findings from freshwater habitats. Through analysis of key differences and likely commonalities between environments, we discuss how an integrated view of these fields of research will enhance our knowledge of the complex behavior and ecological impacts of microplastic pollutants

    Self-Healing Collagen-Based Hydrogel for Brain Injury Therapy

    Get PDF
    Hydrogels derived from biopolymers, also called biohydrogels, have shown potential for brain injury therapy due to their tunable physical, chemical, and biological properties. Among different biohydrogels, those made from collagen type I are very promising candidates for the reparation of nervous tissues due to its biocompatibility, noncytotoxic properties, injectability, and self-healing ability. Moreover, although collagen does not naturally occur in the brain, it has been demonstrated that collagen type I, which resides in the basal lamina of the subventricular zone in adults, supports neural cell attachment, axonal growth, and cell proliferation due to its intrinsic content of specific cell-signaling domains. This chapter summarizes the most relevant results obtained from both in vitro and in vivo studies using self-healing biohydrogels based on collagen type I as key component in the field of neuroregeneration.University of RegensburgUniversidad de La LagunaMinisterio de Ciencia, Innovación y Universidade
    corecore