919 research outputs found

    Analysis of the magnetic coupling in binuclear complexes. II. Derivation of valence effective Hamiltonians from ab initio Cl and DFT calculations

    Get PDF
    Most interpretations of the magnetic coupling J between two unpaired electrons rest upon simple valence models that involve essentially the ferromagnetic direct exchange contribution, Kab , and the antiferromagnetic effect of the delocalization resulting from the interaction between neutral and ionic determinants, tab , whose energy difference is U. Ab initio valence-only calculations give very poor estimates of J, whatever the definition of the magnetic orbitals, and large CI expansions are required to evaluate it properly. It is, however, possible to define valence effective Hamiltonians from the knowledge of the eigenenergies and the eigenvectors of these accurate CI calculations. When applied to four different complexes, this strategy shows that spin polarization may change the sign of the direct exchange interaction, Kab , and that dynamical correlation results in a dramatic reduction of the effective repulsion U. The present article also shows how Kab , tab , and U effective parameters can be extracted from density functional theory ~DFT! calculations and that the typical overestimation of J in DFT can be attributed to an excessive lowering of the effective on-site repulsio

    Analysis of the magnetic coupling in binuclear systems. III. The role of the ligand to metal charge transfer excitations revisited

    Get PDF
    In magnetic coordination compounds and solids the magnetic orbitals are essentially located on metallic centers but present some delocalization tails on adjacent ligands. Mean field variational calculations optimize this mixing and validate a single band modelization of the intersite magnetic exchange. In this approach, due to the Brillouin’s theorem, the ligand to metal charge transfer LMCT excitations play a minor role. On the other hand the extensive configuration interaction calculations show that the determinants obtained by a single excitation on the top of the LMCT configurations bring an important antiferromagnetic contribution to the magnetic coupling. Perturbative and truncated variational calculations show that contrary to the interpretation given in a previous article C. J. Calzado et al., J. Chem. Phys. 116, 2728 2002 the contribution of these determinants to the magnetic coupling constant is not a second-order one. An analytic development enables one to establish that they contribute at higher order as a correlation induced increase in the LMCT components of the wave function, i.e., of the mixing between the ligand and the magnetic orbitals. This larger delocalization of the magnetic orbitals results in an increase in both the ferroand antiferromagnetic contributions to the coupling constan

    Four-spin cyclic exchange in spin ladder cuprates

    Get PDF
    The four-spin cyclic exchange term Jring of three spin-ladder cuprates (SrCu2O3, Sr2Cu3O5, and CaCu2O3) has been calculated from ab initio quantum chemistry calculations. For the first two compounds, a non-negligible cyclic exchange is found, aproximately 20% of the magnetic coupling across the rungs, J⊥, and always larger than the value obtained for two-dimensional La2CuO4 system. In the case of CaCu2O3, the Jring value is quite small, due to the folding of the Cu-O-Cu rung angle, but the Jring/J⊥ ratio is also 0.2 as in the two other system

    Time-dependent Stochastic Modeling of Solar Active Region Energy

    Full text link
    A time-dependent model for the energy of a flaring solar active region is presented based on a stochastic jump-transition model (Wheatland and Glukhov 1998; Wheatland 2008; Wheatland 2009). The magnetic free energy of the model active region varies in time due to a prescribed (deterministic) rate of energy input and prescribed (random) flare jumps downwards in energy. The model has been shown to reproduce observed flare statistics, for specific time-independent choices for the energy input and flare transition rates. However, many solar active regions exhibit time variation in flare productivity, as exemplified by NOAA active region AR 11029 (Wheatland 2010). In this case a time-dependent model is needed. Time variation is incorporated for two cases: 1. a step change in the rates of flare jumps; and 2. a step change in the rate of energy supply to the system. Analytic arguments are presented describing the qualitative behavior of the system in the two cases. In each case the system adjusts by shifting to a new stationary state over a relaxation time which is estimated analytically. The new model retains flare-like event statistics. In each case the frequency-energy distribution is a power law for flare energies less than a time-dependent rollover set by the largest energy the system is likely to attain at a given time. For Case 1, the model exhibits a double exponential waiting-time distribution, corresponding to flaring at a constant mean rate during two intervals (before and after the step change), if the average energy of the system is large. For Case 2 the waiting-time distribution is a simple exponential, again provided the average energy of the system is large. Monte Carlo simulations of Case~1 are presented which confirm the analytic estimates. The simulation results provide a qualitative model for observed flare statistics in active region AR 11029.Comment: 25 pages, 9 figure

    Low-Voltage SEM of Natural Plant Fibers: Microstructure Properties (Surface and Cross-Section) and their Link to the Tensile Properties

    Get PDF
    In this study, the microstructure of different natural plant fibers (flax, jute, ramie, and sisal fibers) were characterized by using low-voltage Scanning Electron Microscopy (LV-SEM). The LV-SEM observations indicated that jute and sisal fibers exhibit less variation in terms of the fiber cross-sectional area, internal lumen shape and size, and cell wall thickness in comparison to flax and ramie fibers. We find that this is also reflected in the tensile properties of the fibers. The tensile properties of single ramie fibers and their fracture behavior was investigated in detail. The stress-strain behavior showed two distinctive regimes. For linear curves, the tensile strength varies from 648-1086 MPa whereas nonlinear curves result in much lower values (177-452) MPa. This variation was linked to differences in the microstructure of the fibers. The LV-SEM of the tensile fracture surfaces of ramie fibers revealed details on the cell wall structure and its fracture behavior under tensile load. Moreover, the SEM images confirm that the collapse of the primary cell wall generally leads to a non-linear stress-strain curve for single ramie fibers

    Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results

    Get PDF
    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 ± 0.1 fm s−2/√Hz or (0.54 ± 0.01) × 10−15 g/√Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 ± 0.3) fm/√Hz, about 2 orders of magnitude better than requirements. At f ≤ 0.5 mHz we observe a low-frequency tail that stays below 12 fm s−2/√Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA

    Self-Triggered and Event-Triggered Set-Valued Observers

    Get PDF
    This paper addresses the problem of reducing the required network load and computational power for the implementation of Set-Valued Observers (SVOs) in Networked Control System (NCS). Event- and self-triggered strategies for NCS, modeled as discrete-time Linear Parameter-Varying (LPV) systems, are studied by showing how the triggering condition can be selected. The methodology provided can be applied to determine when it is required to perform a full (``classical'') computation of the SVOs, while providing low-complexity state overbounds for the remaining time, at the expenses of temporarily reducing the estimation accuracy. As part of the procedure, an algorithm is provided to compute a suitable centrally symmetric polytope that allows to find hyper-parallelepiped and ellipsoidal overbounds to the exact set-valued state estimates calculated by the SVOs. By construction, the proposed triggering techniques do not influence the convergence of the SVOs, as at some subsequent time instants, set-valued estimates are computed using the \emph{conventional} SVOs. Results are provided for the triggering frequency of the self-triggered strategy and two interesting cases: distributed systems when the dynamics of all nodes are equal up to a reordering of the matrix; and when the probability distribution of the parameters influencing the dynamics is known. The performance of the proposed algorithm is demonstrated in simulation by using a time-sensitive example

    Finite-time average consensus in a Byzantine environment using Set-Valued Observers

    Get PDF
    This paper addresses the problem of consensus in the presence of Byzantine faults, modeled by an attacker injecting a perturbation in the state of the nodes of a network. It is firstly shown that Set-Valued Observers (SVOs) attain finite-time consensus, even in the case where the state estimates are not shared between nodes, at the expenses of requiring large horizons, thus rendering the computation problem intractable in the general case. A novel algorithm is therefore proposed that achieves finite-time consensus, even if the aforementioned requirement is dropped, by intersecting the set-valued state estimates of neighboring nodes, making it suitable for practical applications and enabling nodes to determine a stopping time. This is in contrast with the standard iterative solutions found in the literature, for which the algorithms typically converge asymptotically and without any guarantees regarding the maximum error of the final consensus value, under faulty environments. The algorithm suggested is evaluated in simulation, illustrating, in particular, the finite-time consensus property

    Distributed Fault Detection Using Relative Information in Linear Multi-Agent Networks

    Get PDF
    This paper addresses the problem of fault detection in the context of a collection of agents performing a shared task and exchanging relative information over a communication network. We resort to techniques in the literature to construct a meaningful observable system and overcome the issue that the system of systems is not observable. A solution involving Set-Valued Observers (SVOs) is proposed to estimate the state in a distributed fashion and a proof of convergence of the estimates is given under mild assumptions. The performance of the proposed algorithm is assessed through simulations

    Fault detection for LPV systems using Set-Valued Observers: A coprime factorization approach

    Get PDF
    This paper addresses the problem of fault detection for linear parameter-varying systems in the presence of measurement noise and exogenous disturbances. The applicability of current methods is limited in the sense that, to increase accuracy, the detection requires a large number of past measurements and the boundedness of the set-valued estimates is only guaranteed for stable systems. In order to widen the class of systems to be modeled and also to reduce the associated computational cost, the aforementioned issues must be addressed. A solution involving left-coprime factorization and deadbeat observers is proposed in order to reduce the required number of past measurements without compromising accuracy and allowing the design of Set-Valued Observers (SVOs) for fault detection of unstable systems by using the resulting stable subsystems of the coprime factorization. The algorithm is shown to produce bounded set-valued estimates and an example is provided. Performance is assessed through simulations, illustrating, in particular that small-magnitude faults (compared to exogenous disturbances) can be detected under mild assumptions
    corecore