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Most interpretations of the magnetic couplingJ between two unpaired electrons rest upon simple
valence models that involve essentially the ferromagnetic direct exchange contribution,Kab , and
the antiferromagnetic effect of the delocalization resulting from the interaction between neutral and
ionic determinants,tab , whose energy difference isU. Ab initio valence-only calculations give very
poor estimates ofJ, whatever the definition of the magnetic orbitals, and large CI expansions are
required to evaluate it properly. It is, however, possible to define valence effective Hamiltonians
from the knowledge of the eigenenergies and the eigenvectors of these accurate CI calculations.
When applied to four different complexes, this strategy shows that spin polarization may change the
sign of the direct exchange interaction,Kab , and that dynamical correlation results in a dramatic
reduction of the effective repulsionU. The present article also shows howKab , tab , andU effective
parameters can be extracted from density functional theory~DFT! calculations and that the typical
overestimation ofJ in DFT can be attributed to an excessive lowering of the effective on-site
repulsion. © 2002 American Institute of Physics.@DOI: 10.1063/1.1446024#

I. INTRODUCTION

The magnetic properties of molecular biradicals, inter-
molecular complexes, transition metal binuclear, or poly-
nuclear architectures are the subject of an intense research
effort. In material science as well, magnetic lattices receive
an increasing attention.1–4 The basic characteristics of these
systems, which all involve localized unpaired electrons, are
the sign and the amplitude of the couplingJ between the
unpaired electrons on neighbor sites. This information may
be introduced in a Heisenberg–Dirac–Van Vleck spin-only
Hamiltonian:5

Ĥ52(
i , j

Ji j Ŝi Ŝj , ~1!

whereŜi and Ŝj are the spin operators on sitesi and j. The
experimental values ofJ are obtained by fitting the results
coming from measurements of magnetic susceptibility, neu-
tron scattering, or Raman spectroscopy to those obtained by
assuming the Heisenberg microscopic Hamiltonian. The
magnetic coupling constantJ may be negative~antiferromag-
netism, AF! or positive~ferromagnetism, F!.6 This coupling
is essentially local.7–9 The interaction between the nearest

neighbors usually prevails, although in some architectures
the second neighbor interaction has been assumed to be simi-
lar to the nearest one as in CuGeO3

10 and Li2CuO2.11

From the very beginning of this domain, models have
been proposed which essentially rest upon a very limited set
of electrons and orbitals. Most of them invoke the magnetic
orbitals and the unpaired electrons only. Hence for a bi-
nuclear problem withms56 1

2 on each magnetic center, only
two unpaired electrons in two local orbitalsa andb are con-
sidered. The models may be formulated in a nonorthogonal
valence bond~VB! model,12,13in an orthogonal valence bond
description14 if a and b have been orthogonalized, i.e.,
^aub&50, or in a valence configuration interaction~VCI!
picture.15 All these models stay on a minimal valence de-
scription of the problem. They have led to some qualitative
conclusions:

~i! the direct exchangeKab between the magnetic orbitals
is a ferromagnetic~triplet favoring! contribution;

~ii ! the other contribution is antiferromagnetic and comes
from the specific electronic delocalization occurring
in the singlet, through the mixing of the neutral domi-

nant singlet VB configurations (1/&)(ab̄1bā) with
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the ionic VB determinantsuaā& and ubb̄&. Its ampli-
tude is governed by the effective hopping integral
tab :

2tab5K 1

&
~ab̄1bā!UĤU 1

&
~aā1bb̄!L ~2!

and by the energy difference between the neutral and ionic
VB structures:

U5 1
2@^~aā1bb̄!uĤu~aā1bb̄!&

2^~ab̄1bā!uĤu~ab̄1bā!&#. ~3!

Up to the second order, the antiferromagnetic contribution14

to J is 24tab
2 /U and the quantity 2tab can be related to the

energy difference between the symmetry-adaptedg and u
molecular orbitals:15 2tab5«g2«u .

These models have been widely used not only asa pos-
teriori rationalization of the experiment, for instance to in-
terpret the structural dependence ofJ in a series of
complexes,16–18 but also as an intellectual guide, for in-
stance, to build ferro- or ferrimagnetic lattices.19

However,ab initio calculations apparently fail to support
the validity of these elementary pictures. It is actually pos-
sible to define accurate magnetic orbitals from self-consistent
field ~SCF! calculations on the upper or lower multiplets of a
binuclear system. These calculations minimize the energy of
a simple description of these states~in terms of two determi-
nants for a two electron in two orbital problem! in a mean
field approximation. Natural magnetic orbitals may as well
be defined from very accurate descriptions, involving exten-
sive configuration interaction~CI! expansions. But in both
cases the valence-only description, i.e., the interaction be-
tween uab̄&, ubā&, uaā&, and ubb̄& determinants, gives very
poor results, the values ofJ being frequently of incorrect
sign and, when not, one order of magnitude too small.20–25

Accurate values ofJ can be obtained byab initio CI
techniques.8,9,22–30A perturbative second-order analysis was
performed by Malrieuet al.31–33 showing the importance of
processes which involve other orbitals and electrons. Since
the perturbation expansion is not very reliable due to conver-
gence problems,32 a selected CI scheme has been defined
from perturbative arguments. The energies and wave func-
tions of the desired states are obtained by diagonalizing dif-
ferent selected spaces. The dynamical correlation effect is
obtained through excitations involving either occupied
~holes,h! or virtual ~particles,p! inactive orbitals. Up to the
second order in a perturbative expansion, the excitation can
concern at most two holes and two particles. These (2h
12p) excitations do not contribute to the energy difference
and can be omitted in the CI expansion, leading to the varia-
tional so-called difference dedicated CI method.34 This ap-
proach has led to very accurate values of the magnetic cou-
pling in a wide series of systems. A preceding paper35 has
shown that it is possible to analyze the role of the various
types of processes which go beyond the valence-only de-
scription ~spin-polarization, dynamical repolarization of
ionic VB structures, etc.! using different CI spaces.

The first aim of this work is to analyze whether it is
possible to return from this complex picture to a simple va-
lence space description, in which the interactions are no
longer the bare ones imposed by the direct action of the
Hamiltonian, but effective interactions incorporating the ef-
fects of external correlation. The theory of effective Hamil-
tonians is a tool for a rigorous concentration of the
information.36,37 Its principle is recalled in Sec. III. When
applied to a two-electron in two-orbital problem it gives a
dressed valence-only Hamiltonian. The comparison between
the bare and the dressed valence-only Hamiltonians, ob-
tained for a series of four binuclear complexes of Cu~II ! ions
~described in Sec. II!, shows the action of the dynamical
correlation, i.e., the modification of theKab , tab , and U
parameters. Three strategies are employed for this concentra-
tion of information, namely,

~i! the original theory of Bloch,38 which uses information
coming from four exact eigenstates, when available;

~ii ! an alternative formalism, which defines a Hermitian
effective Hamiltonian, by using the Gram–Schmidt
orthogonalization;39 and

~iii ! the theory of intermediate effective Hamiltonians,
proposed by Malrieuet al.,40 which handles the two
lowest eigenstates only.

All these methods lead to a consistent conclusion concerning
a dramatic reduction of the effective on-site repulsionU as
an effect of the dynamical polarization.

The second prospect of the present work concerns DFT
calculations on magnetic complexes~Sec. IV!. It is shown
that it is possible to derive DFT evaluations of the integrals
Kab , tab, andU, from various solutions of the Kohn–Sham
equations~closed shell singlet, restricted open shell triplet,
and broken-symmetry singlet solutions!. These calculations
lead to an overestimation of theutab /Uu ratio, compared to
the bestab initio utab

eff/Ueffu value, resulting in a too large ionic
VB component in the broken-symmetry solution. This ex-
plains the generally observed overestimation ofJ in these
approaches. The key role of the exchange potential will be
illustrated and discussed. Finally, Sec. V contains the conclu-
sions of both papers.

II. DESCRIPTION OF THE SYSTEMS
AND COMPUTATIONAL DETAILS

Four binuclear systems involving twod9 Cu~II ! centers
i.e., two active electrons in two magnetic orbitals have been
considered. The first one is a fragment of the CuO2 square
lattice of the La2CuO4 perovskite, which presents supercon-
ducting behavior after hole doping, while it is a two-
dimensional antiferromagnetic lattice withJ;21000 cm21

before doping (Jexp521032648 cm21, 21081640
cm21).41,42 A Cu2O7 cluster properly embedded in a set of
pseudopotentials and point charges@Fig. 1~a!# has been used
to represent this system. The remaining three examples come
from chemistry, namely,

~i! the @Cu2Cl6#22 complex in a planar geometry, Fig.
1~b!, with a weak antiferromagnetic character (Jexp

50,240 cm21);43
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~ii ! @Cu2(N3)2(NH3)6#21 with end-to-end bridging-azido
groups, Fig. 1~c!, leading to a very strong antiferro-
magnetic behavior (Jexp,2800 cm21);44

~iii ! Cu2(CH3COO)4(H2O)2 with four acetato bridges,
Fig. 1~d!, presenting an intermediate antiferromag-
netism (Jexp52286,229464 cm21).45,46

The relative orientation of the magnetic orbitals in these four
systems is presented in the Scheme:

for ~a! the Cu2O7 cluster,~b! the @Cu2Cl6#22 complex,~c!
the @Cu2(N3)2(NH3)6#21 complex, and ~d! the
Cu2(CH3COO)4(H2O)2 molecule, respectively.
A more detailed description of these systems has been re-
ported in paper I,35 together with the computational details
for the CI calculations. TheMOLCAS 4.1 package47 has been
used to obtain the ROHF molecular orbitals. TheCASDI

program48 has been used in the CI calculations and the
NATURAL program49 in the determination of the natural MOs.

All DFT calculations have been performed by means of
the GAUSSIAN 98 code.50 The B3LYP51 parametrization has
been used in the DFT calculations, with the following basis
sets: for the@Cu2Cl6#22 and @Cu2(m-N3)2(NH3)6#21 com-
plexes, the Hay and Wadt core potential and basis functions
have been used for copper atoms.52 All electron basis sets

have been used for the remaining atoms, the 6-311G basis set
for chlorine53 and the 6-31G one for hydrogen and nitrogen
atoms.54 For the Cu2(m-CH3COO)4(H2O)2 molecule, the
effective core pseudopotential and basis functions proposed
by Stevens, Basch, and Krauss55 have been employed for the
Cu, O, and C atoms. For the cuprate, the same basis func-
tions as in the HF–CI calculations have been used for Cu and
O atoms.

In order to analyze various aspects of the dynamical cor-
relation, four different CI spaces are used, namely,

~i! the bare valence CAS~CASCI!;
~ii ! the DDCI1 space containing all the configurations

reached by single excitations on the top of the CAS.
Three types of excitations can be distinguished:

• 1h, where an electron moves from an inactive occupied
orbital to an active orbital, with a possible simultaneous
single excitation inside the active space;

• 1p, where an active electron is moved to a virtual or-
bital, and as in the preceding case, this movement can
be coupled with single excitations inside the active
space;

• 1h11p, where an electron moves from an occupied to
a virtual orbital, with possible simultaneous single ex-
citations inside the active space. The spin polarization
contributions, i.e., a simultaneous excitation of a core
electron to the active space and of an active electron of
different spin to a virtual orbital, are included.

~iii ! the DDCI2 space, which adds to the previous space
the 2h determinants, i.e., two core electrons moving
to the active orbitals, and 2p excitations, i.e., two
electrons from the active orbitals to the virtual ones;

~iv! the DDCI space, containing also the 2h11p determi-
nants~two core electrons moving to an active orbital
and to a virtual one, respectively! and 1h12p deter-
minants~one core and one active electrons moving to
two virtual orbitals!.

Regarding the DFT calculations, Noodleman’s broken-
symmetry approach56 has been used to establish the value of
the magnetic coupling. Since the overlap between the mag-
netic orbitals is rather small in all the studied systems~see
Sec. IV B!, the limit of strong orthogonality has been consid-
ered,J being calculated from

J52~EBS2ET!, ~4!

whereEBS andET are the unrestricted broken symmetry de-
terminent and triplet state energies, respectively.

III. STRICT DETERMINATION OF VALENCE
EFFECTIVE HAMILTONIANS FROM ACCURATE
AB INITIO CI CALCULATIONS

A. The bare valence-only Hamiltonian

Let us recall briefly the nature of the model space, built
from two orthogonal magnetic local orbitals,a and b. It is
composed of four determinants, two neutral,uab̄& and ubā&,
and two ionic ones,uaā& and ubb̄&. The Hamiltonian ex-
pressed in this reduced complete active space takes the form

FIG. 1. Schematic representation of the four models considered:~a! the
Cu2O7 cluster;~b! the @Cu2Cl6#22 complex, in a planar geometry;~c! the
@Cu2(m-N3)2(NH3)6#21 complex with end-to-end bridging azido ligands;
and ~d! the Cu2(m-CH3COO)4(H2O)2 molecule.
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uab̄&

ubā&

uaā&

ubb̄&

FHNN Kab tab tab

Kab HNN tab tab

tab tab HNN1U Kab

tab tab Kab HNN1U

G , ~5!

whereHNN is the energy of the neutral determinants. This
space generates

~i! a purely neutral triplet stateuTu&5(1/&)(uab̄&
2ubā&),

~ii ! a purely ionic singlet state ofu symmetry uSu&
5(1/&)(uaā&2ubb̄&),

~iii ! two singlet states ofg symmetry,uSg
1& and uSg

2&, that
may be expressed as linear combinations of a purely
neutral singletuSg

N&5(1/&)(uab̄&1ubā&), also de-
noted Sab in paper I,35 and a purely ionic singlet
uSg

I &5(1/&)(uaā&1ubb̄&).

The Hamiltonian can be expressed in the basis ofŜ2 eigen-
vector configurations. Taking the energy of the triplet

3Eu5HNN2Kab ~6!

as the energy origin, the Hamiltonian can be written

uSg
N&

uSg
I &

uTu&

uSu&

F 2Kab 2tab 0 0

2tab 2Kab1U 0 0

0 0 0 0

0 0 0 U

G . ~7!

The uSu& state lies at the energyU above the triplet state. In
the g symmetry the lowest singlet stateuSg

1&5cNuSg
N&

1cI uSg
I & ~with cN.cI.0! is essentially neutral. Its energy is

1Eg
15Kab1

U2AU2116tab
2

2
. ~8!

The second rootuSg
2&52cI uSg

N&1cNuSg
I & is essentially ionic

and much higher in energy:

1Eg
25Kab1

U1AU2116tab
2

2
, ~9!

lying close toU when utabu!U.
Paper I of this series35 has shown how to obtain the

values of theKab , tab , and U integrals from the CASCI
solution. A second-order perturbative expansion leads to the
well-known expression of the magnetic coupling:14

J52Kab2
4tab

2

U
. ~10!

Using the relations 2tab5«g2«u and U5EI2EN5Jaa

2Jab ~Jaa and Jab being the one and two-center Coulomb
repulsions, respectively!, Eq. ~10! can be written as15

J52Kab2
~«g2«u!2

Jaa2Jab
, ~11!

exploited in most of the qualitative rationalizations of the
magnetic coupling and of its structural dependence.16–18

B. The effective Hamiltonian approach

Whatever the definition of the valence space~Hartree
Fock or natural orbitals!, the physics of the magnetic cou-
pling cannot be contained in the two elementary features,
namely direct exchange and kinetic exchange. It would be
impossible as well to reduce it to an enlarged valence space
including one or a few occupied MOs of the bridging ligand,
as suggested by the two-band model, popular in solid state
physics, since dynamical correlation phenomena involving
virtual MOs appear to be crucial in the determination of the
amplitude of the magnetic coupling. But it is possible to
project the exact information obtained from the large CI cal-
culations into the valence space, considered as a model
space, using the rigorous theory of effective Hamiltonians.
This is the scope of the present section.

1. Quasi-degenerate perturbation theory

A way to produce an effective Hamiltonian, spanned by
a given model spaceS, consists in using the well-known
quasidegenerate perturbation theory.38,57–59This is at least a
conceptual guide, as it was in the preceding paper,35 to which
we shall refer for the identification of the various effects. The
second-order expression of the matrix elements ofĤeff are
given by

^I uĤeff
~2!uL&5^I uĤuL&1 (

ua&¹S

^I uĤua&^auĤuL&

EL
~0!2Ea

~0! ,

;I ,LPS, ~12!

where S is the model space and the denominator is the
zeroth-order energy difference between theright component
uL& of the matrix element and the outer space determinantua&.
From this formulation it is possible to identify which matrix
elements are affected by the various perturbersua&. It should
be pointed out that the formalism is not Hermitian, as shown
by Eq. ~12!. If uI& and uL& have different zeroth-order ener-
gies, as occurs in magnetic systems when one of them is a
neutral determinant and the other an ionic determinant, then

^I uĤeff
(2)uL&Þ^LuĤeff

(2)uI&. In particular, the consequence to be ex-
pected is the effect of the perturbers to be larger for the

^neutraluĤeff
(2)uionic& than for thê ionicuĤeff

(2)uneutral& effective
hopping, since the energy denominators are larger in absolute
value for the latter.

Returning to the developments of paper I,35 some predic-
tions can be made:

~i! The spin polarization correction directly affectsKab

since it couplesuI &5ucoreab̄& and uL&5ucorebā& through
the spin polarizedaā

1ah̄ap
1aaucoreab̄& determinant.

~ii ! The 1h11p determinants giving the
ap

1ahaā
1ab̄ucoreab̄& intermediate states change the active

part of the wave function and lead to

• a small second-order modification ofKab due to the
interaction between the two neutral VB determinants,

• a modification oftab due to the interaction between the
neutral and ionic determinants, and

• a more important modification ofU due to the polariza-
tion of the ionic forms, as shown in the Diagram:
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which may be seen as the internal part of Diagram 11 in
paper I.35 It gives

Ueff5U1DU5U2(
h

(
p

^huJ̃a2 J̃bup&2

U1DEh→p
, ~13!

whereJ̃a5Ja2Ka/2 andDEh→p is the excitation energy to
the h→p promotion.

The corrected kinetic exchange is obtained accordingly:

2
tab
2

Ueff

52
tab
2

U S 11(
h

(
p

^huJ̃a2 J̃bup&2

U~U1DEh→p!
1higher ordersD .

~14!

The fourth-order term was derived in the previous paper@Eq.
~56! of Ref. 35#. The higher orders introduced by the change
from U to Ueff are physical contributions toJ through infinite
summations of the diagrams.

~iii ! The 2h and 2p excitations essentially consist in
modifications of the exchange integral through the interme-
diate statesaā

1ah̄8ab
1ahucoreab̄& andap̄8

1 ab̄ap
1aaucoreab̄&;

~iv! the 2h11p and 1h12p determinants essentially
touch the hopping integral up through the intermediate states
ap

1ah8aā
1ah̄ucoreab̄& andap8

1 ahap̄
1ab̄ucoreab̄&.

To summarize this section, the expected results are

~a! the spin polarization should modify theKab value, the
sign of the correction being system dependent; and

~b! the 1h11p dynamical polarization of the ionic com-
ponents should reduce the energy difference between
the neutral and the ionic parts,Ueff. As shown in the
Appendix, it may be predicted that at the third order the
same perturbers should lower theu^aāuDĤ (3)uab̄&u,
i.e., the u^ ionicuDĤ (3)uneutral&u5ut INu value, while
the u^ab̄uDĤ (3)uaā&u element, that is the
u^neutraluDĤ (3)u ionic&u5utNIu counterpart, should be
left practically unchanged, contributing to the non-
Hermitian character of the effective Hamiltonian. The
2h11p and 1h12p determinants should affect essen-
tially the hopping integrals, and paper I35 has shown
that the effect is an increase of thetab magnitude.

Of course the present discussion is based on low-order con-
siderations and the construction ofĤeff from the variational
CI calculations may somewhat differ from second-order de-
velopments. Moreover, the QDPT expansion has no chance
to converge when working with this four-dimensional space.
Actually, some ligand to metal charge transfer~LMCT!
states lie below the ionic M1M2uSu& and uSg

2& states. These
LMCT states act as intruders, resulting in small positive en-
ergy denominators and inducing the divergence of the series.
Hence the QDPT arguments are purely qualitative.60 We now
go on to nonperturbative approaches using our variational
calculations in order to build effective Hamiltonians.

2. Effective Hamiltonian from the exact spectrum

The theory developed by Bloch38 establishes a procedure
to define effective Hamiltonians, expanded in a low-
dimensional model space, from the knowledge of the
eigenenergies and eigenstates of the exact Hamiltonian.

Let us consider a model space,S, of small dimension,
i.e., spanned byn vectorsuF I&. Its projector is

P̂S5(
I PS

uF I&^F I u. ~15!

Here we are interested in a valence CAS, spanned by the four
VB determinantsS5$uab̄&,ubā&,uaā&,ubb̄&%, or their four
combinations:S5$uSg

N&,uSg
I &,uSu&,uTu&%.

Suppose we know a large number of eigensolutions of
the exact Hamiltonian:

ĤuCk&5EkuCk&. ~16!

Consider now then eigenvectors ofĤ having the largest
components~or projections! in the model spaceS. These
eigenvectors define a target space,ST, isodimensional toS:

P̂ST5 (
kPST

uCk&^Cku. ~17!

The wave operatorV̂ sendsS to ST, P̂ST5V̂ P̂S . We would
like to define an effective Hamiltonian inS, the eigensolu-
tions of which are the most exact and informative. This
means that we want an effective Hamiltonian:

Ĥeff5 P̂SĤeffP̂S , ~18!

such that itsn eigenvalues are exact, and that its eigenvectors
are projections of the corresponding exact eigenvectors in
the model space:

Ĥeff
BlochuP̂SCk&5EkuP̂SCk&. ~19!

This is the definition of the Bloch effective Hamiltonian.38

Since the projections of the~necessarily orthogonal! eigen-
vectors may be nonorthogonal,

Skl5^P̂SCkuP̂SC l&Þ0 for kÞ l , ~20!

the Bloch effective Hamiltonian may be non-Hermitian.61 It
is more convenient to orthogonalize theuP̂SCk& vectors by a
procedure that modifies them as little as possible. TheS21/2

transformation,
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uCk8&5S21/2uP̂SCk&. ~21!

presents such a property and leads to the des Cloizeaux ef-
fective Hamiltonian:57

Ĥeff
dCuCk8&5EkuCk8&. ~22!

Other orthogonalizations are possible, for instance the
Gram–Schmidt one39 that is used hereafter.

Of course the previous developments are applicable
when using an approximate spectrum ofĤ, resulting, for
instance, from truncated CI calculations. Let us specify this
technique in our two-electron/two-orbital problem. The
model space being split into three subspaces of different spin
and space symmetry, as shown previously, the effective
Bloch Hamiltonian can only take the following form, taking
as zero of energy the triplet state one:

uSg
N&

uSg
I &

uTu&

uSu&

U2Kab
B 2tNI

B 0 0

2t IN
B UB12Kab

B 0 0

0 0 0 0

0 0 0 UB12~Kab
B 2Kab8B!

U5Ĥeff
Bloch,

~23!

where

Kab
B 5^ab̄uĤeff

Blochubā&, ~24!

Kab8B5^aāuĤeff
Blochubb̄&, ~25!

tNI
B 5^ab̄uĤeff

Blochuaā&, ~26!

t IN
B 5^aāuĤeff

Blochuab̄&, ~27!

and

UB5^aāuĤeff
Blochuaā&2^ab̄uĤeff

Blochuab̄&1Kab8B2Kab
B .

~28!

This Hamiltonian is non-Hermitian,

tNI
B Þt IN

B , ~29!

and introduces five integrals:tNI
B , t IN

B , UB, Kab
B , andKab8B .

The projections of the eigenvectorsu3Cu& and u1Cu& onto
the model space are fixed by symmetry. It is not the case for
the singlet statesu1Cg

1& and u1Cg
2&, whose projections in the

model space have a degree of freedom, namely the ratio of
the coefficients onuSg

N& and uSg
I &:

uP̂S
1Cg

1&5cNuSg
N&1cI uSg

I &, cN.cI.0,
~30!

uP̂S
1Cg

2&52cN8 uSg
N&1cI8uSg8&, cI8.cN8 .0.

Hence the knowledge of the energy of the four states,3Eu ,
1Eu , 1Eg

1, and 1Eg
2, and of the twocI /cN and cI8/cN8 ratios

fixes univocally the values of the five parameters of the
Bloch effective Hamiltonian.

Let us define the overlap between the projections of the
two singlet states as

s5^P̂S
1Cg

1uP̂S
1Cg

2&52cNcN8 1cIcI8 . ~31!

The overlap matrix takes the form

S5S 1 s

s 1D . ~32!

The biorthogonal vectors are defined by

uP̂SCk
†&5S21uP̂SCk&, ~33!

which for the case of the projectionsuP̂S
1Cg

1& anduP̂S
1Cg

2&
become

uP̂S
1Cg

1†&5
1

12s2 ~ uP̂S
1Cg

1&2suP̂S
1Cg

2&),

~34!

uP̂S
1Cg

2†&5
1

12s2 ~2suP̂S
1Cg

1&1uP̂S
1Cg

2&).

Using the spectral representation of the effective Hamil-
tonian,

Heff
Bloch5 (

i 51,4
uP̂SC i&Ei^P̂SC i

†u, ~35!

it is possible to extract the expression for the five effective
parameterstNI

B , t IN
B , UB, Kab

B , andKab8B :

2tNI
B 5

1

12s2 @1Eg
1~cNcI2scNcI8!11Eg

2~scN8 cI2cN8 cI8!#,

2t IN
B 5

1

12s2 @1Eg
1~cNcI1scN8 cI !21Eg

2~scNcI81cN8 cI8!#,

UB5
1

12s2 @1Eg
1
„cI

22cN
2 2s~cI8cI1cNcN8 !…

11Eg
2
„cI8

22cN8
22s~cI8cI1cNcN8 !…#, ~36!

2Kab
B 5

1

12s2 @1Eg
1~cN

2 1scNcN8 !11Eg
2~cN8

21scN8 cN!#23Eu ,

2Kab8B5
1

12s2 @1Eg
1~cI

22scIcI8!11Eg
2~cI8

22scI8cI !#21Eu .

The exchangeKab8B is different fromKab
B , but for simplicity,

its value will not be reported nor discussed hereafter.
Let us consider now the procedure to obtain a Hermitian

effective Hamiltonian. TheS21/2 orthogonalization of the
eigenvectors projector onto the model space, leading to the
des Cloizeaux effective Hamiltonian, symmetrically affects
the essentially neutral stateu1Cg

1&, and the mostly ionic
state u1Cg

2&. Since we are mainly interested in the lowest
~neutral! singlet, it is preferable to leaveuP̂S

1Cg
1& un-

changed, and to orthogonalizeuP̂S
1Cg

2& ~the projections of
the ionic eigenstate! to uP̂S

1Cg
1&. This is a Gram–Schmidt

orthogonalization. The second eigenvector has to satisfy

^P̂S
1Cg

2†uP̂S
1Cg

1&50, and thus

cN8 5cI , cI85cN ,
~37!

uP̂S
1Cg

2†&52cI uSg
N&1cNuSg

I &
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is the second eigenvector of the Gram–Schmidt effective
Hamiltonian Ĥeff

GS, with 1Eg
2 as eigenenergy. This effective

Hamiltonian takes the form

uSg
N&

uSg
I &

uTu&

uSu&

F 2Kab
GS 2tab

GS 0 0

2tab
GS UGS12Kab

GS 0 0

0 0 0 0

0 0 0 UGS1~2Kab
GS22Kab

GS!

G
5Ĥeff

GS. ~38!

This Hermitic Hamiltonian only introduces four parameters.
The knowledge of the three energy differences and of the
cI /cN ratio is sufficient to determine the values of these pa-
rameters. Since in this case the overlap betweenuP̂S

1Cg
1&

and uP̂S
1Cg

2†& is zero, as follows from Eqs.~30! and ~37!,
we obtain the relations

2tab
GS5cIcN~1Eg

121Eg
2!,

UGS5~cI
22cN

2 !~1Eg
121Eg

2!, ~39!

2Kab
GS5cN

2 1Eg
11cI

2 1Eg
223Eu .

In practice it is more convenient to write the projection of the
ground singlet stateuP̂S

1Cg
1& in terms of theugḡ& and uuū&

symmetry-adapted valence determinants:

uP̂S
1Cg

1&5lugḡ&2muuū&, l.m.0, ~40!

where

cN5
l1m

&
and cI5

l2m

&
. ~41!

Equation~39! can be written as

2tab
GS5 1

2~l22m2!~1Eg
121Eg

2!,

UGS522lm~1Eg
121Eg

2!, ~42!

2Kab
GS5lm~1Eg

121Eg
2!1 1

2~
1Eg

111Eg
2!23Eu .

3. Numerical results

a. The Bloch effective Hamiltonian.Table I contains the
Bloch effective Hamiltonian obtained from either ROHF or-
bitals ~ROHF MOs! or natural orbitals~NOs! using the
DDCI wave functions for the Cu2O7 fragment of the perov-
skite lattice. Figure 2 shows the effective parameterstNI

B ,
t IN
B , UB, andKab

B and thecI /cN ratio obtained for this sys-
tem by using increasingly correlated CI wave functions.
When using ROHF MOs, several features are relevant:

~i! The bareKab
B value is small and important changes

appear at the DDCI level.
~ii ! The non-Hermiticity is important: (tNI

B 2t IN
B )/(tNI

B

1t IN
B )'20% – 30% andutNI

B u.ut IN
B u, as expected, at

all post-CASCI level. Figure 2 shows thatut IN
B u begins

to decrease due to third-order effects related with the
1h11p excitations~DDCI1! as explained in the Ap-
pendix. As shown from QDPT~already in paper I35!
the 2h11p perturbers appearing at the DDCI level
enhance the effectiveutab

B u value.
~iii ! The dominant effect is the drastic decrease ofUB,

reduced to 30% of its bare value by the effect of the
dynamical polarization~1h11p, DDCI1!.

Table I and Fig. 2~bottom! show that NOs significantly
change the zeroth-order values~larger Kab

B , larger utab
B u,

smallerUB at the CASCI level, due to larger delocalization
tails in the magnetic orbitals62!, but the trends are similar and
the final DDCI effective interactions are very close~same
value ofUB, same value of the producttNI

B
•t IN

B !.
b. The Gram–Schmidt effective Hamiltonian.In order to

avoid the uncomfortable non-Hermiticity problem, the
Gram–Schmidt effective Hamiltonians are given for three
systems: the cuprate cluster~Table I, Fig. 2!, the chloride
complex~Table II, Fig. 3!, and the azido complex~Table III,
Fig. 4!. The case of copper acetate is discussed at the end of
the section. As in Table I, Tables II and III contain the final
DDCI results for the choride and azido systems, while as in
Fig. 2, Figs. 3 and 4 also report values obtained from shorter
CI expansions. The conclusions are quite similar to the pre-
ceding ones:

~i! The Kab
GS effective exchange may become negative.

This change of sign may be correlated with the sign of
the spin polarization contribution, which is antiferro-
magnetic in the cuprate and the azido complex~cf.
paper I35!, but the changes inKab

GS are larger than the
spin polarization contribution toJ. Hence, the spin
polarization is only a part of the effects contributing
to Kab .

~ii ! When starting from ROHF MOs~top of figures!, the
utab

GSu value decreases under the effect of the 1h11p
determinants~compare CASCI and DDCI1 in Figs.
2–4! and raises close to the original CASCI value at

TABLE I. Magnetic coupling~J!, ionic/neutral ratio of the ground state
(cI /cN), and effective parameters~tab , Kab , and U! for the Cu2O7 frag-
ment of the La2CuO4 lattice from CI and B3LYP calculations. All the values
in cm21, exceptU which is in eV. For the CI calculations, the CASCI and
the DDCI lists of determinants have been employed, with two sets of orbit-
als ~ROHF and natural orbitals!. The CI parameters have been obtained by
using the three kinds of effective Hamiltonians: Bloch, Gram–Schmidt
~GS!, and intermediate~Int!.

MOs Level J a cI /cN Heff U 2Kab tab

ROHF CASCI 2255 0.041 24.12 67 23960

DDCI 21077 0.118 Bloch 7.24 581 t IN 23541
tNI 27041

GS 7.44 2229 23589
Int 8.21 2139 23960

Natural CASCI 2451 0.070 19.65 334 25589
DDCI 21136 0.136 Bloch 7.21 339 t IN 24057

tNI 25412
GS 7.31 222 24089
Int 9.98 386 25589

B3LYP 21689 0.230 4.20 108 23903

aJexp: 21032648 cm21, 21081640 cm21, from Refs. 41 and 42.
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the DDCI level under the effect of the 2h11p and
1h12p determinants. When starting from NOs~bot-
tom of figures!, the CASCI value ofutab

GSu is much
larger. It is again reduced by the 1h11p effects and
slightly raises under the effects of the 2h11p and

1h12p excitations. The DDCI value with NOs is in-
termediate between the zeroth-order values~CASCI!
of utabu from ROHF MOs and NOs.

~iii ! From both sets of orbitals, the main effect is the dra-
matic decrease ofUGS to 5 eV in @Cu2Cl6#22 and 7.5
eV in the cuprate. This decrease is essentially due to
the 1h11p excitations~dynamical repolarization of
ionic VB structures!.

For the azido complex the results have to be considered with
caution since the identification of the essentially ionic va-
lenceu1Cg

2& state was quite difficult and ambiguous. For in-
stance, at the DDCI2 level with NOs, two states, which are
the 14th and 24th of their symmetry, have practically equal
weights on theuSg

I & configuration. At the DDCI level, the
identification of the pertinent roots was impossible when us-
ing ROHF MOs. The rather arbitrary choice between them
leads to very different effective integrals. There are a large
number of ligand to metal or metal to ligand charge transfer
states that can have lower energy than the metal to metal
charge transfer, i.e., the ionic valence-bond state, which ex-
plains the high rank of theu1Cg

2& state. The same is true for
the u1Cu& ionic state. A strong mixing between LMCT and
ionic states can occur, which results in the difficult assign-
ment of the predominantly valence ionic states. For the ac-
etato complex the identification of these states happened to

FIG. 2. Effective parameterstab , Kab , andU ~in eV! and ionic/neutral ratio (cI /cN) in the ground state wave function obtained for the Cu2O7 cluster from
increasingly correlated CI wave function. Three types of effective Hamiltonians: Bloch, Gram–Schmidt~GS!, and intermediate~Int! have been used and two
different sets of molecular orbitals, ROHF~on the top! and natural orbitals~on the bottom!, have been considered.

TABLE II. Magnetic coupling~J!, ionic/neutral ratio of the ground state
(cI /cN), and effective parameters~tab , Kab , and U! for the @Cu2Cl6#22

complex. For the CI calculations, the CASCI and the DDCI lists of deter-
minants have been employed, with two sets of orbitals~ROHF and natural
orbitals!. The CI parameters have been obtained by using the Gram–
Schmidt~GS! and the intermediate~Int! effective Hamiltonians. All values
in cm21, except forU, which is in eV.

MOs Level Ja cI /cN Heff U 2Kab tab

ROHF CASCI 11 0.009 23.61 27 2878

DDCI 222 0.042 GS 5.07 49 2853
Int 5.22 52 2878

Natural CASCI 78 0.024 18.32 162 21764

DDCI 215 0.056 GS 5.07 113 21145
Int 7.81 182 21764

B3LYP 299 0.122 2.15 161 21062

aJexp: 0, 240 cm21, from Ref. 43.
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be technically difficult, the ionic states being out of the first
25 lowest roots of the corresponding symmetry.

These remarks illustrate the conceptual limit of the strict
effective Hamiltonian approach when the model space gen-
erates a set of eigenstates with a broad energy spectrum. In
such a case intruder states appear. Their impact is not simply
the divergent behavior of the QDPT, as usually believed. The
intruder states result in an impossible or arbitrary definition

of the target space, i.e., of the set of the exact eigenvectors
which are supposed to be generated from the model space.
This comment supports the idea that one has to define less
ambitious effective Hamiltonians, which, in this case, no
longer try to generate the ionic excited states and concentrate
on the two low-lying magnetic states. Such effective Hamil-
tonians may be defined using the concept and theory of the
intermediate effective Hamiltonians.

C. Valence intermediate effective Hamiltonian

1. Theory

The intermediate Hamiltonian,40 built on an n-dimen-
sional model space, is only asked to reproducem(m,n)
exact eigenvalues and the projections of the correspondingm
eigenstates onto the model space:

Ĥ intuP̂SCk&5EkuP̂SCk&, k51, m,n. ~43!

This imposesm(m21) conditions and there is an intrinsic
flexibility in the definition of Ĥ int. When only thek state is
looked for, it is possible to impose

Ĥ int5 P̂SĤ P̂S1 P̂SD̂
kP̂S , ~44!

where D̂k is a state specific diagonal operator. For the par-
ticular determinantuI& of the model space, the eigenequations
for the exact Hamiltonian lead to

FIG. 3. Effective parameterstab , Kab , andU ~in eV! and ionic/neutral ratio (cI /cN) in the ground state wave function obtained for the@Cu2Cl6#22 complex
from increasingly correlated CI wave function. The Gram–Schmidt and intermediate effective Hamiltonians have been used and two different sets of
molecular orbitals, ROHF~on the top! and natural orbitals~on the bottom!, have been considered.

TABLE III. Magnetic coupling~J!, ionic/neutral ratio of the ground state
(cI /cN), and effective parameters~tab , Kab , and U! for the
@Cu2(m-N3)2(NH3)6#21 complex. For the CI calculations, the CASCI and
DDCI lists of determinants have been employed, with two sets of orbitals
~ROHF and natural orbitals!. The CI parameters have been obtained by
using the Gram–Schmidt~GS! and the intermediate~Int! effective Hamilto-
nians. All values in cm21, except forU, which is in eV.

MOs Level Ja cI /cN Heff U 2Kab tab

ROHF CASCI 282 0.021 25.77 12 22218

DDCI 2802 0.095 Int 5.73 2380 22218

Natural CASCI 2253 0.080 18.85 720 26100

DDCI 21103 0.159 GS 4.57 2147 23007
Int 9.27 837 26100

B3LYP 23026 0.341 3.26 2144 24482

aJexp: ,2800 cm21, from Ref. 44.
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~HII 2Ek!cI
k1 (

LÞI PS
HILcL

k1 (
a¹S

HIaca
k 50, ~45!

where

uCk&5 (
LPS

cL
k uL&1 (

a¹S
ca

k ua& ~46!

and

HIL5^I uĤuL& and HIa5^I uĤua&. ~47!

The state specific energy shift of the diagonal matrix element
may be defined for each determinant of the model space:

D II
k 5S (

a¹S
HIaca

k D ~cI
k!21, ~48!

which from Eqs.~43! and ~44! gives

P̂S~Ĥ1D̂k!P̂SuP̂SCk&5EkuP̂SCk&. ~49!

This strategy may be applied to the present problem. Taking
the energy of the triplet as the reference,3Eu , we ask the
intermediate Hamiltonian to reproduce the energy of the neu-
tral singlet stateu1Cg

1& and the corresponding ratiocI /cN of
the valence purely ionic and purely neutral states in it. In this
symmetry the model space is bidimensional, spanned by
uSg

N& and uSg
I &, and the energy of the lowest rootu1Cg

I & with
respect to the triplet state is

1Eg
123Eu52Kab

Int1
U Int2A~U Int!2116tab

2

2

@see Eq.~16! of paper I35#. ~50!

In this basis set the intermediate Hamiltonian is

uSg
N&

uSg
I &U2Kab

Int 2tab

2tab U Int12Kab
IntU, ~51!

where tab has been forced to keep the bare valence value.
Solving the secular equations thecI /cN ratio can be written

cI

cN
5

U Int2A~U Int!2116tab
2

4tab
. ~52!

The effective parameters follow the relations

2Kab
Int5~1Eg

123Eu!22tab

cI

cN
,

~53!

U Int52tab

cI
22cN

2

cIcN
.

In terms of the coefficients of the symmetry-adapted deter-
minants,l andm, the effective parameters in the intermedi-
ate Hamiltonian can be expressed as

FIG. 4. Effective parameterstab , Kab , and U ~in eV! and ionic/neutral ratio (cI /cN) in the ground state wave function obtained for the
@Cu2(m-N3)2(NH3)6#21 complex from increasingly correlated CI wave function. The Gram–Schmidt and intermediate effective Hamiltonians have been used
and two different sets of molecular orbitals, ROHF~on the top! and natural orbitals~on the bottom!, have been considered.

3994 J. Chem. Phys., Vol. 116, No. 10, 8 March 2002 Calzado et al.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  150.214.230.47 On: Fri, 28 Oct 2016

10:08:14



2Kab
Int5~1Eg

123Eu!22tab

l2m

l1m
,

~54!

U Int528tab

lm

l22m2 .

2. Results

The intermediate Hamiltonian interactions appear in
Tables I–IV and Figs. 2–5 for the four systems. Let us first
comment the results from ROHF MOs:

~i! The effective exchangeKab
Int may be significantly dif-

ferent from its bare value and its sign may become
negative ~as occurs in three of the systems at the
DDCI level!.

~ii ! The on-site repulsionU Int is again considerably re-
duced with respect to the CASCI value, essentially
under the effect of 1h11p determinants, but now the
antiferromagnetic effect of the 2h11p and 1h12p
determinants results in an additional reduction ofU Int

sincetab is kept fixed. The DDCI final values ofU Int

~5–7 eV! are in qualitative agreement with theUGS

values previously discussed~Tables I–IV!. The cup-
rate fragment has the largest value ofU Int, which can
be interpreted as due to the fact that the O22 ligand is
less polarizable than those of the other systems.

When going to NOs, the starting CASCItab values are much
larger. The ratiotab

Natural/tab
ROHF varies between 1.4 for Cu2O7

to 2.75 for the azido complex. This variation results from the

FIG. 5. Effective parameterstab , Kab , and U ~in eV! and ionic/neutral ratio (cI /cN) in the ground state wave function obtained for the
Cu2(m-CH3COO)4(H2O)2 molecule from increasingly correlated CI wave function and by using an intermediate effective Hamiltonian, and with two
different sets of molecular orbitals: ROHF~on the top! and natural orbitals~on the bottom!.

TABLE IV. Magnetic coupling~J!, ionic/neutral ratio of the ground state
(cI /cN), and effective parameters~tab , Kab , and U! for the
Cu2(m-CH3COO)4(H2O)2 molecule. For the CI calculations, the CASCI
and the DDCI lists of determinants have been employed, with two sets of
orbitals ~ROHF and natural orbitals!. The CI parameters have obtained by
using the Intermediate~Int! Hamiltonian. All values in cm21, except forU,
which is in eV.

MOs Level Ja cI /cN U 2Kab tab

ROHF CASCI 219 0.011 23.72 4 21042

DDCI 2195 0.049 5.19 292 21042

Natural CASCI 233 0.025 19.84 66 21996

DDCI 2238 0.066 7.49 25 21996

B3LYP 2557 0.103 3.94 2216 21645

aJexp: 2286 cm21, 229464 cm21, from Refs. 45 and 46.
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much larger delocalization of the NOs. The change of the
cI /cN ratio under the effect of the dynamical correlation
~CASCI versus DDCI values! is much weaker from NOs
than from ROHF MOs. This is consistent with the larger
delocalization tails of the natural magnetic orbitals. Since
cI /cN;2utabu/U, the variation ofU Int for NOs is signifi-
cantly smaller. The CASCI value ofU Int is smaller than for
ROHF orbitals~effect of the delocalization! and the final
DDCI value ofU Int ranges from 7.5 eV for the acetato com-
plex to 10 eV for the cuprate fragment. As another conse-
quence of the delocalization in the NOs, theKab

Int value is
much larger at the CASCI level and it remains large at the
DDCI level.

D. Comparison between different effective
Hamiltonians

Three types of effective Hamiltonians have been consid-
ered in this section. The most informative one is the Bloch
Hamiltonian, which handles three energy differences and two
eigenvectors but which is not Hermitian. Sacrificing the in-
formation about the ionic singlet state ofg symmetry, the
Hermiticity is restored in the Gram–Schmidt version. Losing
all knowledge on the ionic states and using only the singlet-
triplet energy difference and the neutral singlet eigenvectors
leads to the intermediate effective Hamiltonian.

The use of the Bloch Hamiltonian is not recommended
in view of its violent non-Hermiticity, reflected in the values
of tNI

B andt IN
B ~Table I!. The hopping integrals obtained from

the Gram–Schmidt procedure by using the ROHF MOs are
quite similar to the bare CASCI values. This supports the
intermediate Hamiltonian formalism which keepstab fixed at
its bare value. The results obtained with the NOs are less
stable.

The values of the effective direct exchangeKab depend
on the choice of the procedure and of the molecular orbitals.
The main and common feature of all procedures and all MO
sets is the dramatic reduction of the effective on-site repul-
sion U.

From a practical point of view, we would recommend
the use of the intermediate Hamiltonian procedure which
does not require the rather difficult identification of the ionic
excited states in the CI spectrum.

IV. EFFECTIVE VALENCE INTERACTIONS FROM DFT
CALCULATIONS

A. Theory

Some attempts have been reported16–18 to establish a
connection between the DFT calculations and the usual
valence-only descriptions which are formulated in terms of
three parameters,Kab , tab , andU, or Kab , («g2«u), and
(Jaa2Jab) @Eqs.~10! and~11!, respectively#. Inconsistencies
appear in the proposed procedures~the extractedKab , tab ,
and U values are not consistent with the calculatedJ
value!,16 which can be related with the difficulties in defining
the proper singly-occupied molecular orbitals~SOMOs! in
the broken-symmetry calculations. The present article pro-

poses an alternative extraction, after a careful definition of
the SOMOs. The procedure involves the variational calcula-
tion of three states:

~i! the unrestricted triplet stateuTUHF
1 &5ugu&;

~ii ! the unrestricted broken-symmetry solutionuSBS&
5uaBSb̄BS&; and

~iii ! the closed-shell singlet stateuSgḡ&5ugḡ&.

From the first calculation, after a proper definition of the
a-SOMOs62 ~for instance, by using the NOs given in
GAUSSIAN or those obtained from some projection tech-
nique!, it is possible to extract a relevanttab value:

2tab
DFT5«g

SOMO2«u
SOMO, ~55!

where«g
SOMO, «u

SOMO are the orbital energies. SinceuTUHF
1 &

5ugu&5uab&, the energy of the triplet state can be written as

ET
UHF
1 5^abuĤuab&5^ab̄uĤuab̄&2Kab

DFT . ~56!

The energy of the closed-shell singlet can be expressed eas-
ily since

ugḡ&5 1
2~ uab̄&1ubā&1uaā&1ubb̄&), ~57!

ESgḡ
5 1

2~^ab̄uĤuab̄&1^aāuĤuaā&!1Kab
DFT12tab

DFT . ~58!

Following Eq. ~28! and consideringKab8 5Kab , ^aāuĤuaā&
5^ab̄uĤuab̄&1U, hence

ESgḡ
5^ab̄uĤuab̄&1

UDFT

2
1Kab

DFT12tab
DFT . ~59!

The broken-symmetry solution leads to the definition of two
nonorthogonal orbitalsaBS and bBS. When utab

DFT/UDFTu!1,
these two orbitals can be expressed perturbatively as

aBS5a2
tab
DFT

UDFT b, bBS5b2
tab
DFT

UDFT a. ~60!

The broken-symmetry determinant can be developed as

SBS5uaBSb̄BS&

5uab̄&2
tab
DFT

UDFT ~ uaā&1ubb̄&)1S tab
DFT

UDFTD 2

ubā&. ~61!

Its energy may be identified to the low-order expression,
provided that utab

DFT/UDFTu is small enough, and hence
^aBSubBS&522tab

DFT/UDFT:

ESBS
5^ab̄uĤuab̄&2

2~ tab
DFT!2

UDFT . ~62!

Equation~56! gives the hopping integral and from Eqs.~56!,
~59!, and~62!, the effective interactionsKab

DFT andUDFT can
be extracted:

ESgḡ
2ET

UHF
1 52tab

DFT1 1
2U

DFT12Kab
DFT , ~63!

ESBS
2ET

UHF
1 52

2~ tab
DFT!2

UDFT 1Kab
DFT . ~64!
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Equation~65! is consistent with the recommendation63,64 to
evaluate the coupling constant,J, in the density functional
approach asJ52(ESBS

2ET
UHF
1 ).

B. Results

As shown elsewhere,62 the DFT magnetic orbitals are
much more delocalized than the ROHF ones and signifi-
cantly more delocalized than the natural magnetic orbitals. If
they were used with the exact Hamiltonian, according to the
trend observed when going from ROHF MOs to NOs, very
large increases ofutabu andKab and a lowering ofU would
be expected. Actually the DFT energies are obtained with a
modified exchange, and the effective DFT parameters are
quite different from the values they would have using the
exact Hamiltonian. Since the overlap between the magnetic
orbitals aBS and bBS in the broken-symmetry solution is
quite small in all the studied systems~Sab

ab50.12 for the
chloride complex, 0.29 for the azido complex, 0.23 for the
cuprate, and 0.11 for the acetato complex!, the B3LYP pa-
rameters have been calculated according to the above-
described procedure. They are reported in Tables I–IV to-
gether with the calculatedJ values, always exceedingly
antiferromagnetic. One can see that

~i! the Kab
DFT value is far from being negligible, its sign

may be negative~cf. Tables III and IV!;
~ii ! the utab

DFTu value is smaller than the bare value ofutabu
for the NOs, despite the larger delocalization tails of
the DFT magnetic orbitals.62 A certain underestima-
tion of the hopping integrals in DFT calculations with
respect to the best CI calculations have been noticed
in mixed-valence compounds65,66 in the recent past;

~iii ! the UDFT effective on-site repulsion is exceedingly
low, half of the values obtained from theab initio
effective Hamiltonians, in particular for the chloride.

As a result, theu2tab
DFT/UDFTu, i.e., thecI /cN ratio, is too

large. DFT exaggerates the ionic component of the wave
function, i.e., the fluctuation or the intermetallic delocaliza-
tion in the singlet state.

As previously discussed,63,67 this effect is entirely due to
the exchange potential. Actually, by increasing the amount of
Fock exchange without changing the correlation part of the
original B3LYP functional in the cuprate, Fig. 6 shows that
utab

DFTu and Kab
DFT are slightly reduced, butUDFT is dramati-

cally increased and of course thecI /cN ratio is reduced. For
the mixing giving the experimentalJ value for this system,
utab

DFTu andUDFT remain slightly smaller than the values ob-
tained from the ab initio effective Hamiltonian ~tab

DFT

520.48 eV, tab
GS520.507 eV, UDFT56.4 eV, UGS

57.3 eV!. The cI /cN ratio becomes 0.150 with this mixing
of the exchange functionals, close to theab initio value of
0.136 eV. The reduction ofutab

DFTu andKab
DFT and the increase

of UDFT when increasing the Fock part of the hybrid ex-
change are consistent with the trend to reduce the ligand
content of the DFT magnetic orbitals, observed and dis-
cussed elsewere.62

V. CONCLUSIONS

Most of the qualitative interpretations of the magnetic
coupling in binuclear complexes are based on very limited
valence-only spaces, with two electrons in two magnetic or-
bitals. The model handles three basic parameters: the direct
exchange,Kab , the hopping integral,tab , and the on-site
Coulombic repulsion,U. When using the exact Hamiltonian
and a variational definition of the magnetic orbitals, either
ROHF MOs or NOs, the valence-only CI calculations pro-
duce unreliable values of the magnetic couplingJ. The val-
ues ofJ have sometimes an incorrect sign and in antiferro-
magnetic systems the amplitude ofJ is frequently one order
of magnitude too small. From these CI matrices, the values

FIG. 6. Effect of the Fock exchange percentage used in the exchange func-
tional on the values of the magnetic couplingJ and the effective parameters
tab , Kab , andU for the La2CuO4 system. All the values in eV. The dashed
vertical line corresponds to the Fock percentage recovering the experimental
J value.
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of on-site repulsion,U, are much larger~.20 eV! than what
is usually assumed in model Hamiltonians. As was shown,
accurate values ofJ are only obtained when the complex
dynamical correlation effects are taken into account. From
this contrast it might be concluded that it is impossible to
project the physics of the coupling onto a valence picture, as
do most of the qualitative models.

The present article shows that it is possible to extract
from sophisticated extended CI calculations effective
valence-only Hamiltonians, in which the effective interac-
tions Kab , tab , andU are completely revised under the ef-
fect of the nonvalence determinants. Three procedures have
been proposed. The most refined one, the Bloch develop-
ment, has the defect of being non-hermitian, leading to dif-
ferent values for the neutral to ionic and ionic to neutral
hopping integrals. This problem is avoided through an appro-
priate Gram–Schmidt orthogonalization of the eigenvectors.
These two methods require the identification of four eigen-
states with large projections on the valence model space. The
identification is not difficult for the two lowest, mostly neu-
tral, eigenstates (u1Cg

1&,u3Cu&), but it can be quite arbitrary
for the intermetallic charge transfer states, which are strongly
mixed with the LMCT states.

A third, less demanding, definition has been proposed
using the theory of the intermediate Hamiltonians, which
only uses the energies of the two lowest states and the wave
function of the singlet state, conserving the value oftab ob-
tained from the bare valence CASCI. This simplification is
supported by the final value oftab obtained from the Gram–
Schmidt effective Hamiltonian, which turns out to be close to
the baretab value.

Whatever the definition of the effective Hamiltonian, it
may be concluded that the main effects of the dynamical
correlation are the following:

~i! The effective direct exchangeKab integral is affected
by the dynamical correlation, which may change its
sign. Due to the larger delocalization tails of the NOs,
the correspondingKab is more positive than when
working with ROHF MOs. However, its value is
strongly dependent on the procedure followed and a
univocal determination ofKab has not been possible.

~ii ! The effectiveU value (U;5 – 8 eV) is dramatically
reduced from its bare value, being divided by a factor
between 3 and 4. This reduction is essentially due to
the dynamical polarization of the ionic VB structure
since it appears at the DDCI1 level. This reduction
results in a considerable increase of the ionic VB
component of the ground singlet state~cI /cN ratio is
multiplied by a factor between 2 and 5!.

Regarding the DFT approaches, the present article shows
that it is possible to extract from different solutions of the
Kohn–Sham equations, consistent values of the three param-
etersKab , tab , andU:

~i! although slightly underestimated, thetab value is in
good agreement with theab initio estimates;

~ii ! the effective exchangeKab may be negative, probably
due to spin polarization effects, incorporated in the
UHF and broken-symmetry solutions;

~iii ! the effective on-site repulsionU is exceedingly small,
between 2 and 4 eV. This underestimation ofU has
been shown to be due to the exchange potential and it
is consistent with both the systematic overestimation
of the antiferromagnetic coupling and the observed
exceedingly delocalized character of the magnetic
orbitals.62 The excess of the ionic component of the
singlet wave function is consistent with the underes-
timation of the DFT spin-densities in ferromagnetic
systems.

The two papers of this series have

~i! shown once more the irrelevance of bare valence de-
scription;

~ii ! confirmed the possibility to obtain accurate values of
the magnetic coupling provided that the state specific
dynamical correlation effects are properly treated, as
done by the DDCI technique;

~iii ! demonstrated the possibility to analyze the various
types of dynamical correlation effects~spin polariza-
tion, dynamical polarization of VB ionic components,
dispersive contribution to the effective hopping! and
to assess their order of magnitudes~i.e., to combine
numerical accuracy with intelligibility!;

~iv! explained why dynamical correlation increases the
ligand/metal delocalization~phenomenologically ob-
served elsewhere62!;

~v! shown the possibility to return, in a rational and con-
trolled manner to a valence-only picture, the main ef-
fect of the dynamical correlations consisting in a dras-
tic reduction of the on-site electronic repulsionU;

~vi! proposed consistent handling of DFT calculations for
the definition of the magnetic orbitals and the deriva-
tions of the DFTKab , tab , andU parameters; and

~vii ! systematically confronted the bestab initio correlated
descriptions to the DFT ones, showing that the most
widely used approximation of the exchange functional
~B3LYP! dramatically underestimatedU, which re-
sults in an overestimation of the charge fluctuation
and of the antiferromagnetic coupling.
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APPENDIX: THIRD-ORDER QDPT CONTRIBUTIONS
TO THE HOPPING INTEGRAL

It is possible to analyze the leading QDPT third-order
contributions to the effective Hamiltonian. Let us callDĤ (3)

the correction, given by

^I uDĤ ~3!uJ&5 (
a¹S

(
b¹S

^I uĤua&^auĤub&^buĤuJ&

~EJ
~0!2Ea

~0!!~EJ
~0!2Eb

~0!!

2 (
a¹S

(
KPS

^I uHua&^auHuK&^KuHuJ&

~EJ
~0!2Ea

~0!!~EK
~0!2Ea

~0!!
.

~A1!

Most of the contributions to these two terms areunlinkedand
cancel. One must concentrate on thelinked contributions to
the second term of Eq.~A1! and especially those that couple
the ionic and the neutral model space determinants. They
involve excitations that act differentially on the ionic and the
neutral determinants, and especially the large effect of the
1h11p excitations on the ionic ones. In the second summa-
tion, a large contribution is expected whenuI &5uaā&5uK&
and uJ&5uab̄& or uJ&5ubā&:

^aāuDH ~3!ubā&52 (
a¹S

^aāuHua&^auHuaā&^aāuHubā&

~E
ab̄

~0!
2Ea

~0!!~Eaā
~0!2Ea

~0!!
,

~A2!

whereE
ab̄

(0)
and Eaā

(0) are the energies of the neutral and the
ionic VB determinants, respectively. When$ua&% are the 1h
11p determinants, one may write

^aāuDĤ ~3!ubā&52(
h

occ

(
p

vir
^huJ̆a2 J̆bup&2tab

~U1DEh→p!~DEh→p!
,

~A3!

where J̆a5 1
2( Ĵa2K̂a). This contribution decreases the am-

plitude of tab . If a closure approximation on theh→p exci-
tation energies is performed,

DEh→p5DEh→p ;h,p, ~A4!

Eq. ~A3! can be written

^aāuDĤ ~3!ubā&5tabS DU

DEh→p
D , ~A5!

whereDU is the large negative changeDU5Ueff2U of the
on-site repulsion due to the 1h11p determinants defined in
Eq. ~13!. Hence the (1h11p) determinants decrease the am-
plitude of the^aāuHeffubā& interaction. However, the matrix
element^bāuĤeffuaā& will not be affected by such an effect
since there is not significant linked contribution to

^bāuDH ~3!uaā&52 (
a¹S

^bāuHua&^auHubā&^bāuHuaā&

~E
ab̄

~0!
2Ea

~0!!~Eaā
~0!2Ea

~0!!
.

~A6!

The QDPT theory leads to the Bloch non-Hermitian effective
Hamiltonian if it converges. The present Appendix explains
why the Bloch effective Hamiltonian matrix elements verify

u^aāuHBloch
eff ubā&u,u^bāuHBloch

eff uaā&u, ~A7!

as observed in the results of the Bloch Hamiltonian section.
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