180 research outputs found

    Global biodiversity indicators reflect the modeled impacts of protected area policy change

    Get PDF
    Global biodiversity indicators can be used to measure the status and trends of biodiversity relating to Convention on Biological Diversity (CBD) targets. Whether such indicators can support decision makers by distinguishing among policy options remains poorly evaluated. We tested the ability of two CBD indicators, the Living Planet Index and the Red List Index, to reflect projected changes in mammalian populations in sub-Saharan Africa in response to potential policies related to CBD targets for protected areas (PAs). We compared policy scenarios to expand the PA network, improve management effectiveness of the existing network, and combinations of the two, against business as usual. Both indicators showed that more effective management would provide greater benefits to biodiversity than expanding PAs alone. The indicators were able to communicate outcomes of modeled scenarios in a simple quantitative manner, but behaved differently. This work highlights both the considerable potential of indicators in supporting decisions, and the need to understand how indicators will respond as biodiversity changes

    Global priorities for conservation across multiple dimensions of mammalian diversity

    Get PDF
    Conservation priorities that are based on species distribution, endemism, and vulnerability may underrepresent biologically unique species as well as their functional roles and evolutionary histories. To ensure that priorities are biologically comprehensive, multiple dimensions of diversity must be considered. Further, understanding how the different dimensions relate to one another spatially is important for conservation prioritization, but the relationship remains poorly understood. Here, we use spatial conservation planning to (i) identify and compare priority regions for global mammal conservation across three key dimensions of biodiversity-taxonomic, phylogenetic, and traits-and (ii) determine the overlap of these regions with the locations of threatened species and existing protected areas. We show that priority areas for mammal conservation exhibit low overlap across the three dimensions, highlighting the need for an integrative approach for biodiversity conservation. Additionally, currently protected areas poorly represent the three dimensions of mammalian biodiversity. We identify areas of high conservation priority among and across the dimensions that should receive special attention for expanding the global protected area network. These high-priority areas, combined with areas of high priority for other taxonomic groups and with social, economic, and political considerations, provide a biological foundation for future conservation planning efforts

    obesity weight loss and heart failure

    Get PDF
    Background The current scientific data controversially indicate obesity both as a risk factor for developing congestive heart failure (CHF) and a positive prognostic factor. Aims The present study evaluated the impact of weight loss on clinical and instrumental parameters in a selected group of obese patients with CHF. Methods An overall population of 560 HF patients was sub-grouped on the basis of the Body Mass Index (BMI): 8.2% were underweight (BMI 31). Of the 46 overweight and obese patients, 28 (55.2% men, age 51–80 years) accepted a tailored low-caloric dietary program for at least 4 months. The 28 patients belonged to both obese and overweight groups (BMI>27.8) and were in NYHA classes II–III. Mean follow-up was 5 months. Results The mean loss of body weight was 4 kg in 81.4% of patients, versus 3 kg mean increase in whole (560 patients) population (72.5–75.5 kg). In the 28 patients we recorded a significant ( p <0.05) improvement of NYHA class, better control of arterial blood pressure and statistically significant ( p <0.05) lowering of total cholesterol and triglyceride levels. Conclusions Tailored dietetic program may improve clinical and instrumental parameters in patients with CHF

    DAMA: the global distribution of alien mammals database

    Get PDF
    We developed the DAMA (Distribution of Alien MAmmals) database, a comprehensive source reporting the global distribution of the 230 species of mammals that have established, self-sustaining and free-ranging populations outside their native range due to direct or indirect human action. Every alien range is accompanied by information on its invasion stage, pathway, method of introduction and date of introduction. We collected information from 827 different sources (scientific literature, books, risk assessments, reports, online biodiversity databases and websites), and used it to draw alien range maps for these species following the IUCN mapping framework. DAMA comprises 2726 range polygons, covering 199 Countries, 2190 level 1 administrative areas and 11 zoogeographic realms for the period 21500 BC-AD 2017. The most represented orders among introduced mammal species are Rodentia (n=58, 25.22%), Cetartiodactyla (n=49 species, 21.30%), Carnivora (n=30 species, 13.04%), Diprotodontia (n=28, 12.17%) and Primates (n=26, 11.30%). Mammal species have been frequently introduced for hunting (n=100), pet trade (n=57), conservation (n=51) and fauna improvement (n=42). The majority of range polygons are placed on islands (n=2196, 80.56%), encompass populations that have moved beyond establishment and into the invasion stage (n=1655, 60.71%), and originated from 1500 AD to the present (n=1496, 54.88%). Despite inheriting literature biases towards more studied regions (e.g., developed Countries), DAMA is the most up-to-date picture of alien mammal global distribution and can be used to investigate their invasion ecology across different biogeographical regions. There are no copyright or proprietary restrictions; IUCN range maps were modified into a derivative work according to the IUCN's terms of service

    Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals

    Get PDF
    Although habitat fragmentation is often assumed to be a primary driver of extinction, global patterns of fragmentation and its relationship to extinction risk have not been consistently quantified for any major animal taxon. We developed high-resolution habitat fragmentation models and used phylogenetic comparative methods to quantify the effects of habitat fragmentation on the world's terrestrial mammals, including 4,018 species across 26 taxonomic Orders. Results demonstrate that species with more fragmentation are at greater risk of extinction, even after accounting for the effects of key macroecological predictors, such as body size and geographic range size. Species with higher fragmentation had smaller ranges and a lower proportion of high-suitability habitat within their range, andmost high-suitability habitat occurred outside of protected areas, further elevating extinction risk. Our models provide a quantitative evaluation of extinction risk assessments for species, allow for identification of emerging threats in species not classified as threatened, and provide maps of global hotspots of fragmentation for the world's terrestrial mammals. Quantification of habitat fragmentation will help guide threat assessment and strategic priorities for global mammal conservation

    Measuring Terrestrial Area of Habitat (AOH) and Its Utility for the IUCN Red List

    Get PDF
    The International Union for Conservation of Nature (IUCN) Red List of Threatened Species includes assessment of extinction risk for 98 512 species, plus documentation of their range, habitat, elevation, and other factors. These range, habitat and elevation data can be matched with terrestrial land cover and elevation datasets to map the species’ area of habitat (AOH; also known as extent of suitable habitat; ESH). This differs from the two spatial metrics used for assessing extinction risk in the IUCN Red List criteria: extent of occurrence (EOO) and area of occupancy (AOO). AOH can guide conservation, for example, through targeting areas for field surveys, assessing proportions of species’ habitat within protected areas, and monitoring habitat loss and fragmentation. We recommend that IUCN Red List assessments document AOH wherever practical

    Assessing the cost of global biodiversity and conservation knowledge

    Get PDF
    Knowledge products comprise assessments of authoritative information supported by stan-dards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge productsfor biodiversity conservation, and they are widely used to inform policy and advise decisionmakers and practitioners. However, the financial cost of delivering this information is largelyundocumented. We evaluated the costs and funding sources for developing and maintain-ing four global biodiversity and conservation knowledge products: The IUCN Red List ofThreatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the WorldDatabase of Key Biodiversity Areas. These are secondary data sets, built on primary datacollected by extensive networks of expert contributors worldwide. We estimate that US160million(range:US160million (range: US116–204 million), plus 293 person-years of volunteer time (range: 278–308 person-years) valued at US14million(rangeUS 14 million (range US12–16 million), were invested inthese four knowledge products between 1979 and 2013. More than half of this financingwas provided through philanthropy, and nearly three-quarters was spent on personnelcosts. The estimated annual cost of maintaining data and platforms for three of these knowl-edge products (excluding the IUCN Red List of Ecosystems for which annual costs were notpossible to estimate for 2013) is US6.5millionintotal(range:US6.5 million in total (range: US6.2–6.7 million). We esti-mated that an additional US114millionwillbeneededtoreachpre−definedbaselinesofdatacoverageforallthefourknowledgeproducts,andthatonceachieved,annualmainte−nancecostswillbeapproximatelyUS114 million will be needed to reach pre-defined baselines ofdata coverage for all the four knowledge products, and that once achieved, annual mainte-nance costs will be approximately US12 million. These costs are much lower than those tomaintain many other, similarly important, global knowledge products. Ensuring that biodi-versity and conservation knowledge products are sufficiently up to date, comprehensiveand accurate is fundamental to inform decision-making for biodiversity conservation andsustainable development. Thus, the development and implementation of plans for sustain-able long-term financing for them is critical

    Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010

    Get PDF
    This article is based upon work from COST Action ES1101 "Harmonising Global Biodiversity Modelling" (Harmbio), supported by COST (European Cooperation in Science and Technology).Although it is generally recognized that global biodiversity is declining, few studies have examined long-term changes in multiple biodiversity dimensions simultaneously. In this study we quantified and compared temporal changes in the abundance, taxonomic diversity, functional diversity and phylogenetic diversity of bird assemblages, using roadside monitoring data of the North American Breeding Bird Survey from 1971 to 2010. We calculated 12 abundance and diversity metrics based on five year average abundances of 519 species for each of 768 monitoring routes. We did this for all bird species together as well as for four sub-groups based on breeding habitat affinity (grassland, woodland, wetland and shrubland breeders). The majority of the biodiversity metrics increased or remained constant over the study period, whereas the overall abundance of birds showed a pronounced decrease, primarily driven by declines of the most abundant species. These results highlight how stable or even increasing metrics of taxonomic, functional or phylogenetic diversity may occur in parallel with substantial losses of individuals. We further found that patterns of change differed among the species sub-groups, with both abundance and diversity increasing for woodland birds and decreasing for grassland breeders. The contrasting changes between abundance and diversity and among the breeding habitat groups underscore the relevance of a multi-faceted approach to measuring biodiversity change. Our findings further stress the importance of monitoring the overall abundance of individuals in addition to metrics of taxonomic, functional or phylogenetic diversity, thus confirming the importance of population abundance as an essential biodiversity variable.Publisher PDFPeer reviewe

    Shortfalls and Solutions for Meeting National and Global Conservation Area Targets

    Get PDF
    Governments have committed to conserving 17% of terrestrial and 10% of marine environments globally, especially “areas of particular importance for biodiversity” through “ecologically representative” Protected Area (PA) systems or other “area-based conservation measures”, while individual countries have committed to conserve 3–50% of their land area. We estimate that PAs currently cover 14.6% of terrestrial and 2.8% of marine extent, but 59–68% of ecoregions, 77–78% of important sites for biodiversity, and 57% of 25,380 species have inadequate coverage. The existing 19.7 million km2 terrestrial PA network needs only 3.3 million km2 to be added to achieve 17% terrestrial coverage. However, it would require nearly doubling to achieve, costefficiently, coverage targets for all countries, ecoregions, important sites, and species. Poorer countries have the largest relative shortfalls. Such extensive and rapid expansion of formal PAs is unlikely to be achievable. Greater focus is therefore needed on alternative approaches, including community- and privately managed sites and other effective area-based conservation measures.We are grateful to the many individuals and organizations who contribute to the IUCN Red List of Threatened Species,WDPA, or to identification of IBAs or AZEs. We thank A. Bennett for help with data collation and N. Dulvy, W. Laurance, and D. Faith for helpful comments on an earlier draft. This work was supported by the Cambridge Conservation Initiative Collaborative Fund and Arcadia.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/conl.1215
    • 

    corecore