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ABSTRACT 

Although it is generally recognized that global biodiversity is declining, few studies have 

examined long-term changes in multiple biodiversity dimensions simultaneously. In this 

study we quantified and compared temporal changes in the abundance, taxonomic diversity, 

functional diversity and phylogenetic diversity of bird assemblages, using roadside 

monitoring data of the North American Breeding Bird Survey from 1971 to 2010. We 
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calculated 12 abundance and diversity metrics based on five year average abundances of 519 

species for each of 768 monitoring routes. We did this for all bird species together as well as 

for four sub-groups based on breeding habitat affinity (grassland, woodland, wetland and 

shrubland breeders). The majority of the biodiversity metrics increased or remained constant 

over the study period, whereas the overall abundance of birds showed a pronounced decrease, 

primarily driven by declines of the most abundant species. These results highlight how stable 

or even increasing metrics of taxonomic, functional or phylogenetic diversity may occur in 

parallel with substantial losses of individuals. We further found that patterns of change 

differed among the species sub-groups, with both abundance and diversity increasing for 

woodland birds and decreasing for grassland breeders. The contrasting changes between 

abundance and diversity and among the breeding habitat groups underscore the relevance of a 

multi-faceted approach to measuring biodiversity change. Our findings further stress the 

importance of monitoring the overall abundance of individuals in addition to metrics of 

taxonomic, functional or phylogenetic diversity, thus confirming the importance of 

population abundance as an essential biodiversity variable.  

 

INTRODUCTION 

It is generally acknowledged that global biodiversity is currently declining at an unusually 

high rate (Barnosky et al., 2011, Pereira et al., 2012, Tittensor et al., 2014). This decline 

includes local extirpations as well as complete extinctions of species and is so substantial that 

it has been referred to as ‘defaunation’ (Dirzo et al., 2014, McCauley et al., 2015, Newbold et 

al., 2015). National and international agreements to counteract this decline, like the 

Convention on Biological Diversity (CBD), call for biodiversity changes to be accurately 

quantified (Dornelas et al., 2013, Walpole et al., 2009). So far, biodiversity has typically 
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been quantified based on taxonomic composition, using the number of species and their 

relative abundances to derive metrics like species richness or Shannon’s diversity index. 

However, as it is increasingly recognized that taxonomic diversity represents only one of the 

multiple dimensions of biodiversity, aspects of functional and phylogenetic diversity are 

increasingly included in biodiversity research and assessments (Calba et al., 2014, Devictor 

et al., 2010, Monnet et al., 2014, Purschke et al., 2013, Purvis &  Hector, 2000, Wahl et al., 

2011). Functional diversity represents the distribution of the functional traits of the organisms 

present in an assemblage (Villéger et al., 2008). Functional traits are the morphological, 

physiological or phenological characteristics of an organism that strongly influence its 

performance (Luck et al., 2012, McGill et al., 2006). Hence, metrics of functional diversity 

are considered relevant particularly in the context of ecosystem functioning (Cardinale et al., 

2012, Diaz &  Cabido, 2001). Phylogenetic diversity represents the degree of evolutionary 

divergence of the organisms within an assemblage (Faith, 1992). Metrics of phylogenetic 

diversity have been used as proxies for functional diversity as well as measures of 

conservation interest on their own, representing the evolutionary heritage and potential of 

species’ assemblages (Diaz et al., 2013, Mace et al., 2014, Winter et al., 2013).  

Although no single metric can be expected to adequately describe the 

multidimensionality of biodiversity, at least some redundancy among the large variety of 

metrics is likely, either for formal mathematical reasons or because different metrics may 

respond similarly to environmental change. Hence, there is a clear need to identify a non-

redundant yet representative set of metrics to adequately capture biodiversity change 

(Buckland et al., 2005, Lyashevska &  Farnsworth, 2012, Pereira et al., 2013, Stevens &  

Tello, 2014). Yet, comparative assessments of temporal trends in multiple biodiversity 

metrics have hardly been made (Magurran et al., 2010, Monnet et al., 2014). The few studies 

conducted so far are inconclusive, as they show that temporal changes may or may not be 
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congruent among taxonomic, functional and phylogenetic diversity (Monnet et al., 2014, 

Petchey et al., 2007, Villéger et al., 2010, Winter et al., 2009). Moreover, these studies all 

focused on metrics reflecting species composition and ignored the overall abundance of 

individuals, which influences the organisms’ contribution to ecosystem functioning (Dirzo et 

al., 2014, Inger et al., 2015, McIntyre et al., 2007). Hence, there is a clear need for 

comparative studies of temporal changes in both the diversity of species assemblages and the 

overall abundance of individuals.  

 

In this study we used large-scale and long-term bird monitoring data in, to our 

knowledge, the largest comparative assessment to date of temporal changes in abundance, 

taxonomic diversity, functional diversity and phylogenetic diversity. Birds provide an 

excellent case to investigate biodiversity changes: they have been documented and studied 

more intensively than most other taxa, resulting in a relatively large availability of monitoring 

data as well as information on functional traits and phylogeny (Gregory &  Van Strien, 2010, 

Gregory et al., 2005, Illan et al., 2014, Inger et al., 2015, Monnet et al., 2014, Petchey et al., 

2007, Szabo et al., 2012). We used a large-scale dataset encompassing 40 years of monitoring 

from the North American Breeding Bird Survey (BBS). Our specific aims were twofold: 1) to 

quantify and compare the changes in multiple metrics of abundance and diversity, and 2) to 

identify a non-redundant set of key metrics most representative of the changes. Thus, the 

results of our study enhance our understanding of how different biodiversity metrics may 

replicate or complement each other in their ability to reflect biodiversity change, which in 

turn helps to select an optimum set of metrics to adopt for monitoring (Lyashevska &  

Farnsworth, 2012, van Strien et al., 2012).  
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MATERIAL AND METHODS 

Bird monitoring data 

The North American Breeding Bird Survey (BBS) is a cooperative effort of the United States 

Geological Survey, the Canadian Wildlife Service, and, since 2008, the Mexican National 

Commission for the Knowledge and Use of Biodiversity, with the aim to monitor the status 

and trends of North American bird populations (Sauer et al., 2013). Initiated in 1966, the 

BBS monitoring program has been collecting yearly population counts from an increasing 

number of roadside routes. Each roadside route has a length of 24.5 miles (approximately 40 

km), along which fifty regularly spaced sites are monitored each year in June. At each site, 

the observer records all birds heard or seen within a 400 m radius and within 3 minutes 

(Rittenhouse et al., 2012, Sauer et al., 1997). For the present study we used monitoring data 

from the conterminous United States from 1971 through 2010, thus excluding the early years 

of the survey, when relatively few routes were visited (Illan et al., 2014). The BBS data 

comprise raw counts, which are a function of both population size and detection probability, 

the latter being dependent on characteristics of routes, observers and meteorological 

conditions (Phillips et al., 2010, Rittenhouse et al., 2010, Rittenhouse et al., 2012). To obtain 

a spatially consistent dataset covering the entire study period, we selected routes with at least 

one observation in each five year interval. Then, we reduced sampling variation in abundance 

induced by observed and weather effects by calculating five year average abundances per 

species per route (Illan et al., 2014). This resulted in a dataset of 768 routes each with eight 

five year average abundances of in total 519 species. A list of species is provided in the 

Supporting Information (Table S1).  
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Biodiversity metrics 

We calculated 12 biodiversity metrics for each monitoring route and for each of the eight 

time periods (Table 1). The set of metrics was selected to represent abundance, taxonomic 

diversity, functional diversity and phylogenetic diversity. Because temporal trends may differ 

between or be driven by particular species groups, we calculated the metrics not only for all 

bird species together, but also for four sub-groups based on breeding habitat preferences 

(Table S1): grassland (27 species), woodland (129 species), wetland (83 species), and 

shrubland (81 species). Breeding habitat preferences were derived from the Patuxent Bird 

Identification Infocenter (Gough et al., 1998). This database also distinguished species using 

urban breeding habitats; however, there were too few urban breeders in our dataset to 

perform meaningful metric calculations. Urban breeders (n=13) were therefore not included 

in the separate breeding habitat group analyses, but they were included in the overall 

assessment. To assess the sensitivity of our findings to occasional observations of rare or 

vagrant species, we performed the metric calculations and subsequent analyses also based on 

only those 439 species that were observed consistently throughout all eight five year 

intervals.  

 

Abundance 

To quantify abundance, we used the total abundance and the geometric mean abundance. We 

calculated total abundance by simply summing the abundances of all species at each route, 

thus obtaining a measure representing the total number of individuals. Because changes in 

abundance have been shown to differ among common and less common bird species (Inger et 

al., 2015), we calculated the total abundance not only based on all bird species together, but 

also for common and less common species separately. To that end, we assigned all species to 
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an abundance quartile based on their overall abundance (i.e., the total abundance over all 

routes and the entire study period), with the least abundant species occupying quartile one 

(q1) and the most abundant occupying quartile four (q4) (Inger et al., 2015). Because the 

geometric mean abundance is a multiplicative rather than an additive measure, it reflects 

relative rather than absolute abundances. As such, it is a composite measure of abundance 

and evenness: it declines not only if all species decline proportionally (i.e., lower total 

abundance, same evenness), but also if the abundance distribution becomes less even for a 

given number of individuals (Buckland et al., 2005, Buckland et al., 2011). We calculated the 

geometric mean abundance based on all species within the entire set or particular habitat sub-

group, i.e., a species absent from a particular route in a particular time period was counted as 

zero. Because a geometric mean cannot be calculated if there are zeros in the data, we applied 

an X+1 transformation prior to the calculation (Jongman et al., 1995). As the geometric mean 

may change with the constant chosen for the transformation (Buckland et al., 2011), we 

evaluated the effect of alternative transformations of X+0.1, X+0.01 and X+0.001 on our 

results.  

 

Taxonomic diversity 

As metrics of taxonomic diversity we calculated species richness, Shannon diversity index 

and Simpson diversity index, using the ‘vegan’ package in R, version 2.2-1 (Oksanen et al., 

2015). We took the exponential of Shannon index and the inverse of Simpson index to make 

them comparable to species richness (Jost, 2006).  
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Functional diversity 

We followed the framework of Villéger et al. (2008) to obtain a set of complementary and 

orthogonal metrics of functional diversity (FD): functional richness, functional divergence, 

and functional evenness. These metrics account for the total volume of functional trait space 

occupied by the species present in the community, the abundance distribution of the species 

in functional trait space, and the regularity of this abundance distribution, respectively (Table 

1). We further included functional dispersion to represent the dispersion of the species in the 

trait space (Laliberté &  Legendre, 2010). We calculated the FD metrics based on functional 

traits related to feeding behaviour and resource use as reported in the EltonTraits 1.0 

database, which contains trait values for all 9993 extant bird species (Wilman et al., 2014). 

Traits used in the FD calculations were diet composition (percentage; seven categories), 

foraging height prevalence (percentage; seven layers), foraging activity period (nocturnal or 

diurnal) and body mass (g) (Table S1). This combination of traits reflects foraging behaviour 

and quantity of resources consumed (Calba et al., 2014, Petchey et al., 2007), which in turn 

influence both the species’ responses to environmental change and their effects on ecosystem 

functioning (Luck et al., 2012, Vetter et al., 2011). For traits expressed as proportions or 

prevalence, each category was included as a separate variable in the FD calculations and 

weighted according to the total number of categories per trait (for example, a weight of 1/7 

was assigned to each of the seven diet categories). We calculated the FD measures based on a 

Gower dissimilarity matrix using the package ‘FD’ in R, version 1.0-12 (Laliberté et al., 

2015),  In addition to the four composite functional diversity metrics listed above, we 

calculated the proportion of carnivores and the community-weighted mean body mass. The 

proportion of carnivores was calculated as the proportion of individuals with a diet consisting 

of at least 60% meat, fish and/or carrion, following the data and classification of the 

EltonTraits database.  
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Phylogenetic diversity 

We calculated phylogenetic diversity as the total length of the phylogenetic branches 

connecting all species of a given assemblage (Faith, 1992). The larger the total branch length 

of a given assemblage, the more evolutionarily divergent the species (Cadotte et al., 2009). 

We sampled 10 trees from the full posterior distribution of phylogenetic trees from Jetz et al. 

(2012). Per assemblage, we then calculated phylogenetic diversity as the total branch length 

averaged over the 10 trees. We used no more than 10 trees because the computation time 

strongly increased with the number of trees. To assess the extent to which phylogenetic 

diversity depended on the number of phylogenetic trees, we took a random sample of 30 

assemblages for which we calculated phylogenetic diversity based on a number of trees 

ranging from 1 to 10. Compared to differences in phylogenetic diversity among the 

assemblages, fluctuations in phylogenetic diversity related to the number of trees were 

negligible (Fig. S1). Moreover, fluctuations levelled off at about seven trees, indicating that 

10 trees were enough to obtain a representative estimate of phylogenetic diversity.  

Biodiversity changes  

We quantified the temporal changes in the biodiversity metrics in two ways. First, we 

calculated the overall temporal change for each metric per route, i.e., the change from the 

first to the last five year interval, as  

)(5.0 8,1,

1,8,

,










txtx

txtx

xM
MM

MM
ES         Eq.1 

where ESM,x represents the effect size for biodiversity metric M at route x, and Mx,t=1 and 

Mx,t=8 are the values calculated for biodiversity metric M at route x for the intervals 1971-

1975 and 2006-2010, respectively. This effect size measure yields a symmetrical index of 

decrease or increase between -2 and 2 (Böhning-Gaese &  Bauer, 1996, Van Turnhout et al., 
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2007). Second, we estimated the temporal trends in the metrics across all routes throughout 

the eight five year intervals. To that end, we first calculated mean metric values over all 

routes for each five year interval (Table S2). To facilitate comparison among the metrics, we 

then standardized the metric values over time (zero mean and unit variance). Because we 

were interested in the overall direction and strength of the trends, we fitted ordinary least 

squares (OLS) regression models to the standardized metric values. Note that this approach 

results in slopes and intercepts identical to those resulting from an approach where OLS 

models are first fitted for each route and slopes and intercepts are then averaged over the 

routes. For comparison, we also fitted generalized least squares (GLS) models with 

temporally autocorrelated error structure (AR1), in order to account for possible non-

independence of observations closer in time. GLS models tend to have slopes similar to those 

of OLS regression models, yet GLS models have more conservative p-values because the 

temporal autocorrelation is accounted for (Dornelas et al., 2013). 

 

Key metrics 

To quantify the redundancy and complementarity among the changes in the various metrics, 

we applied a combination of principal component analysis (PCA), variable reduction and 

cluster analysis. We did this based on the overall changes of the metrics across the routes 

(i.e., the effect sizes, Eq. 1). First, we determined the dimensionality of the biodiversity 

changes with PCA, based on Spearman rank correlations among the effect sizes (Lyashevska 

&  Farnsworth, 2012, Stevens &  Tello, 2014). To determine the number of non-trivial or 

significant principal components, we randomly permuted the effect sizes per metric, 

conducted a PCA, retained the eigenvalues, and repeated this procedure 1000 times in order 

to create distributions of eigenvalues for each principal component that would be expected by 
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chance. If the eigenvalue of a principal component based on the original dataset was larger 

than the 95
th

 percentile of the eigenvalues based on the randomized data, then we considered 

that particular principal component significant (Peres-Neto et al., 2005). Next, we clustered 

the metrics based on the similarity of their loadings on the significant components using a 

hierarchical clustering algorithm (Ward’s method) based on Euclidean distance and we 

identified a number of clusters equal to the number of significant components. Finally, we 

identified which of the metrics were most representative of the changes. A common approach 

to identify the most representative variables in a set is to select those variables that have high 

loadings on the first (few) principal components. However, by considering one principal 

component at a time, this approach may lead to a sub-optimal or larger subset of the original 

variables than is strictly necessary (Cadima &  Jolliffe, 2001). To avoid this, we used the 

‘improve’ algorithm from the ‘subselect’ package (version 0.12-5), which is specifically 

designed to identify which variables are most representative of the total variation in a dataset 

(Cadima &  Jolliffe, 2001). As a benchmark for the number of key metrics to retain, we used 

the number of significant components. All statistical analyses were performed in R, version 

3.0.3 (R Core Team, 2014). 

 

RESULTS 

Biodiversity changes 

The biodiversity changes showed considerable spatial variation, as exemplified by the effect 

sizes ranging from -2 to 2 (i.e., the minimum and maximum values possible) for several of 

the metrics (Fig. 1, Fig. 2). However, when averaged over all routes, and when considering 

all species together, we found the majority of the metrics to increase over the study period 

(Fig. 3, Table S2-S4). Pronounced increases were observed in particular for the proportion of 
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carnivores (which, on average, more than doubled from 1.3% in 1971-1975 to 2.8% in 2006-

2010), the functional richness (which increased by nearly 60% over the study period), the 

community-weighted mean body mass (which increased from 100 g to 150 g) and the total 

abundance of birds in quartile 3 (from 28 to 36 individuals). In contrast, distinct decreases 

were observed for the total abundance of all birds (from 901 individuals in 1971-1975 to 804 

individuals in 2006-2010) as well as the abundance of the most common species (from 868 to 

762 individuals). These findings did not change when excluding species that were not 

consistently observed throughout all five year intervals. (Fig. 1, Fig. 3, Table S2-S4). Yet, 

changes were clearly different between the breeding habitat groups (Fig. 2, Fig. 3). Grassland 

birds showed, on average, decreases in various metrics, including the total abundance, 

geometric mean abundance, species richness and phylogenetic diversity, whereas these 

metrics increased for woodland birds. Wetland birds tended to decrease in abundance, though 

not as sharply as the grassland birds. Yet, this group showed increases in various measures of 

both taxonomic and functional diversity, including Shannon index, Simpson index, functional 

richness, functional evenness, functional divergence, proportion of carnivores, and 

community-weighted mean body mass. For shrubland birds, the most pronounced change was 

a clear decrease in the community-weighted mean body mass.  

 

Key metrics 

The PCA yielded three significant principal components for all species together and for three 

of the four breeding habitat groups. For the shrubland breeders, four principal components 

were retained (Table S5). The cumulative proportion of variance explained by the non-trivial 

components was between 59 and 63%, with the first component explaining between 30% 

(shrubland breeders) and 37% (woodland breeders) of the total variance (Table S5). Clusters 
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of metrics slightly differed among the species groups and with the data transformation 

applied to calculate the geometric mean abundance (Fig. 4, Fig. 5, Fig. S2). Yet, particular 

metrics were in all cases closely associated with each other, such as the total abundance and 

the abundance of the most common species, or the Shannon index and the Simpson index. 

Metrics depending on the number of species or traits without any abundance weighting 

(species richness, phylogenetic diversity and functional richness) were always in the same 

cluster. In many cases, the richness metrics were also in the same group as the abundance of 

the less common species, reflecting that changes in the abundance of those species in 

particular coincided with changes in species composition. Finally, irrespective of the species 

group, the non-redundant set of metrics most representative of the overall changes included a 

metric of overall abundance (mostly total abundance), a richness metric (species richness, 

phylogenetic diversity or functional richness), and a metric relying on both richness and 

evenness (Shannon index) (Table 2). These results did not change with the data 

transformation applied to calculate the geometric mean abundance. 

 

DISCUSSION 

Biodiversity trends 

Based on long-term roadside monitoring data of the North American BBS, we found 

contrasting trends between the overall abundance of birds and the diversity of assemblages. 

Among the most pronounced trends was a distinct decrease in overall bird abundance, mainly 

driven by declines of the most abundant species. This finding is in line with the results of a 

recent study in Europe (Inger et al., 2015), indicating that declines of common bird species 

constitute a wide-spread phenomenon. In our dataset, we observed strong declines mainly for 

common grassland breeders, like eastern meadowlark (Sturnella magna), as well as highly 
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abundant generalists, including the common grackle (Quiscalus quiscula), common 

nighthawk (Chordeiles minor), chimney swift (Chaetura pelagica) and house sparrow 

(Passer domesticus) (Table S1). Declines of generalists as well as farmland birds have been 

reported before, in both North America and Europe (De Laet &  Summers-Smith, 2007, 

Donald et al., 2001, Reif, 2013). Agricultural intensification has been identified as a main 

driver, for example through increased drainage of grasslands, increased live-stock densities, 

and increased use of pesticides, which reduce food availability for aerial insectivores in 

particular (Donald et al., 2001, Newton, 2004, North American Bird Conservation Initiative 

U.S. committee, 2014, Reif, 2013). Trends may have been amplified by farmland 

abandonment in less productive or remote areas, which occurred across much of eastern 

North America (Flinn &  Vellend, 2005). Forest regrowth in these abandoned farmlands may, 

in turn, explain why the overall abundance of woodland birds has increased, in contrast to the 

other habitat groups (Fig. 2, Fig. 3).  

 

In contrast to the decline in overall abundance, we found various metrics to remain 

stable or increase over the study period (Fig. 1-3). Because species richness, phylogenetic 

diversity and functional richness are derived from species composition without any 

abundance-weighting, the overall increases in these metrics indicate that the assemblages 

have been subject to colonization by new bird species with new combinations of traits or 

distinct phylogenies (Mouillot et al., 2013). Underlying factors may include changes in 

habitat characteristics, shifts in species ranges, for example due to climate change, species 

recovery due to targeted conservation actions (e.g., forest restoration within the Conservation 

Reserve Program), or changes in observer skills (Böhning-Gaese &  Bauer, 1996, Buckland 

et al., 2005, Inger et al., 2015, Reif, 2013, Rittenhouse et al., 2012, Van Turnhout et al., 

2007). We cannot rule out the possibility that the proficiency of the observers has changed 
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over the years. Yet, the BBS monitoring protocol is highly standardized, and given the large 

spatial and temporal scale of our analysis, we see no particular reasons for a directional 

observer bias.  

 

All metrics other than overall abundance, species richness, functional richness and 

phylogenetic diversity account for the proportional abundance of species or traits, hence 

changes in these metrics may reflect species’ extinctions or colonizations, changes in 

abundance distribution, or a combination. For the grassland birds, we observed declines in 

species richness and the total abundance of the common species (TA.q4), yet no changes in 

the Shannon or Simpson index and even increases in functional evenness and functional 

divergence (Fig. 2, Table 2). This illustrates how the disproportionate decline of abundant 

species may yield positive trends in metrics that rely on evenness (Böhning-Gaese &  Bauer, 

1996). The overall increases in functional diversity and functional dispersion indicate that the 

declining common species are located towards the centre rather than the edges of the 

functional trait space of the assemblages, whereas the reverse might hold for the less common 

species (Mouillot et al., 2013). Further, the increase in community-weighted mean body mass 

suggests a relative increase in species with slower life histories or larger body sizes over the 

past decades (Inger et al., 2015, Reif, 2013). Indeed, we found increases in various large-

bodied species, including raptors and scavengers like hawks and vultures as well as wetland 

birds like geese, cranes and cormorants (Table S1). This finding contradicts the generally 

positive correlation between body size and extinction risk (Gaston &  Blackburn, 1995, 

Hilbers et al., 2016) and might at least partly be explained by targeted protection and 

conservation measures, of which these species may have benefited in particular (North 

American Bird Conservation Initiative U.S. committee, 2014, Van Turnhout et al., 2010).  
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In general, richness and total abundance are more likely to be positively than 

negatively associated (Bock et al., 2007, Hurlbert &  Jetz, 2010). This seems at odds with the 

opposite overall trends in richness and total abundance as we observed for all bird species 

together. However, the negative association between richness and total abundance breaks 

down when looking at particular species groups (grassland or woodland breeders; Fig. 3) or 

at the monitoring route scale, where richness and overall abundance turned out to represent 

independent (uncorrelated) dimensions (Fig. 4, Fig. 5). These findings indicate that the 

declines in common species and increases in less common species occurred at different 

locations and in response to different possible drivers (agricultural intensification versus 

conservation measures and forest regrowth).   

 

To summarize, our analysis of long-term North-American BBS monitoring data 

revealed a considerable decline in the total number of birds over the past 40 years, which 

coincided with stable or increasing metrics of taxonomic, functional and phylogenetic 

diversity. The stable or increasing diversity metrics, including increases in mean body size 

and the proportion of carnivores, indicate recovery of large-bodied and carnivorous species 

from previously low levels (‘rewilding’). Yet, the decline in total bird abundance may give 

rise to concern as a species’ contribution to ecosystem functioning is not only dependent on 

its traits, but also on its numbers (Inger et al., 2015). Given that the BBS is a roadside survey 

that covers birds only, our study does not allow to draw conclusions regarding interior 

habitats or other taxonomic groups. Nonetheless, our results on taxonomic diversity match 

three recent studies that found no net loss in local-scale taxonomic diversity based on large 

numbers of assemblage time series covering a variety of taxonomic groups (Dornelas et al., 

2014, Elahi et al., 2015, Vellend et al., 2013). It remains to be investigated how these results 
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relate to biodiversity changes occurring over larger spatial scales (gamma versus alpha 

diversity) as well as longer time frames.   

 

Implications for monitoring biodiversity change 

The contrasting changes we observed between various diversity metrics on the one hand and 

the overall abundance of birds on the other hand emphasize the relevance of a multifaceted 

approach to monitoring biodiversity change. Our results clearly show that an exclusive focus 

on richness and evenness metrics might not capture all relevant aspects of biodiversity 

change, because these metrics might simply miss out on or even respond positively to 

substantial losses of individuals (Böhning-Gaese &  Bauer, 1996). Thus, increasing evenness 

should not be considered an unambiguous indicator of greater diversity, despite it being 

common to do so (Elahi et al., 2015, Magurran, 1988, Purvis &  Hector, 2000). Our results 

further indicate that total abundance is more suited to capture losses of individuals than the 

geometric mean abundance, the latter being a composite measure of abundance and evenness 

and hence more sensitive to increases in the abundance or detectability of less common 

species. 

 

Even a combination of metrics of total abundance, species richness and the 

proportional abundance of species may not fully capture biodiversity changes, because 

species’ replacements may go unnoticed by these metrics (Buckland et al., 2005, Dornelas et 

al., 2014). Possible solutions are to consider changes in species composition (turnover) or to 

include metrics of functional and phylogenetic diversity, which might be more sensitive to 

environmental change (Mouillot et al., 2013, Winter et al., 2009). Indeed, for some species 
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groups, the set of key metrics that we identified included functional richness or phylogenetic 

diversity rather than species richness, indicating that the former are, in some cases, more 

responsive to change (Table 2). Further, our results for the wetland and shrubland breeders 

suggest that the community-weighted mean body mass is also indicative of changes, as this 

metric may change considerably even when there is little change in species richness or 

evenness (Fig. 2, Fig. 3). Functional diversity metrics may become even more informative if 

more traits are included, in particular traits that are responsive to environmental change, such 

as migratory behaviour (Van Turnhout et al., 2010). However, functional or phylogenetic 

diversity metrics require additional information (functional trait data, phylogenetic trees), 

which might be difficult to obtain in particular for taxonomic groups that are less well-

studied.  

To summarize, we identified three main dimensions of biodiversity change (overall 

abundance, richness, and proportional abundance), thereby observing opposing trends 

between overall abundance on the one hand and various diversity metrics on the other. This 

indicates that stable or even increasing metrics of richness or evenness may occur in parallel 

with substantial losses of individuals and supports the importance of population abundance as 

an essential biodiversity variable (Pereira et al., 2013). The abundance of each species at each 

site is a variable that can be used to derive all possible metrics of abundance and taxonomic 

diversity. If this essential biodiversity variable is combined with information on the species’ 

traits and phylogenetic positions, all other metrics used can be derived as well.  
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Fig. S1 Phylogenetic diversity (PD) in relation to the number of phylogenetic trees. 

Fig. S2 Clusters of biodiversity metrics based on all species (n=519), for different constants 

applied to transform the abundance data in order to calculate the geometric mean abundance. 

Table S1 List of bird species and corresponding trait values.  

Table S2 Mean values of the biodiversity metrics across all routes per five year interval.  

Table S3 Slopes (standardized) and p-values of ordinary least squares (OLS) regression 

models of biodiversity metrics against time.  

Table S4 Slopes (standardized) and p-values of generalized least squares (GLS) regression 

models of biodiversity metrics against time.  

Table S5 Variance explained by the principal components, corresponding threshold values, 

and cumulative proportions of variance explained. 
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 Functional richness
 

FRic The convex hull volume of the individual species in 

multidimensional trait space (Villéger et al., 2008). 

 

 Functional evenness
 

FEve The regularity with which species abundances are 

distributed along the minimum spanning tree which links 

all the species in the multidimensional functional space 

(Villéger et al., 2008). 

 

 Functional divergence
 

FDiv Species deviance from the mean distance to the centre of 

gravity within multidimensional trait space, weighted by 

relative abundance (Villéger et al., 2008). 

 

 Functional dispersion
 

FDis The weighted mean distance in multidimensional trait 

space of individual species to the centroid of all species. 

Weights are species’ relative abundances (Laliberté &  

Legendre, 2010). 

 

 Proportion of carnivores PC The abundance of carnivorous species (i.e., species with a 

diet consisting of at least 60% meat, fish and/or carrion) 

relative to the total abundance of all species (%). 

 

 Community-weighted 

mean  

body mass 

CWMm The mean body mass of species weighted by the species’ 

abundances. 

Phylogenetic diversity  

 Phylogenetic diversity PD The total length of the phylogenetic branches connecting 

all species of a given assemblage (Faith, 1992). 

 

a
 ai is the abundance of species i; pi is the proportional abundance of species i; n is the total 

number of species in the dataset; c is a constant. 
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Table 2 Non-redundant key metrics best approximating the overall biodiversity changes and 

the corresponding cumulative proportion of variance explained. Full names of the metrics are 

provided in Table 1. 

Species group Key metrics   Variance  

explained  1 2 3 4 

All species (n=519) TA Shan PD - 0.52 

Species observed in all five year intervals 

(n=439) TA Shan PD - 0.53 

Grassland breeders TA.q4 Shan FRic - 0.52 

Woodland breeders TA Shan FRic - 0.54 

Wetland breeders TA Shan SR - 0.56 

Shrubland breeders TA Shan SR FDiv 0.58 

 

 

Figure captions 

Fig. 1 Changes in biodiversity metrics from 1971-1975 to 2006-2010, showing increases in 

diversity and a decrease in overall abundance. Black diamonds represent the mean; boxplots 

show the median and its 95% confidence interval (thick black line and notch), the 

interquartile distance (boxes), 1.5 times the interquartile distance from the 25
th

 or 75
th

 

percentile (whiskers) and the outliers (open dots). Full names of the metrics are provided in 

Table 1. 

Fig. 2 Changes in biodiversity metrics differ among the four breeding habitat groups. Black 

diamonds represent the mean; boxplots show the median and its 95% confidence interval 

(thick black line and notch), the interquartile distance (boxes), 1.5 times the interquartile 
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distance from the 25
th

 or 75
th

 percentile (whiskers) and the outliers (open dots). Full names of 

the metrics are provided in Table 1. 

Fig. 3 Trends in North American bird assemblages based on metrics of abundance, 

taxonomic diversity, functional diversity and phylogenetic diversity, for all species together 

as well as for specific breeding habitat groups. Metric values were calculated as mean values 

over the 768 monitoring routes and then standardized (zero mean and unit variance) over 

time, to facilitate comparison. Solid and dashed lines represent OLS and GLS regression 

lines, respectively. If no dashed line is visible, the two lines overlap.  Full names of the 

metrics are provided in Table 1. 

Fig. 4 Three clusters of biodiversity metrics based on the overall changes observed across the 

monitoring routes. The number of clusters corresponds with the number of significant 

components as identified by PCA. Full names of the metrics are provided in Table 1. 

Fig. 5 Clusters of biodiversity metrics for each of the four breeding habitat groups. The 

number of clusters corresponds with the number of non-trivial components as identified by 

PCA. Full names of the metrics are provided in Table 1. 
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