207 research outputs found

    Natural and synthetic pigments used in the pink-red coloration of salmon flesh: methodology of quali-quantitative assessments and sampling results

    Get PDF
    In Europe Atlantic salmon leads the first position in the farmed species contest with more than 763,000t (FES, 2007). In the year 2006, Norway produced alone beyond 603,000t followed by the United Kingdom with 128,000t. In these last years, the demand of organic salmon is gradually increased both in domestic and foreign markets. In these fish the pink-red coloration of flesh is obtained by supplementing the feed with shrimp waste meal. In Italy, Coop Italia since three years has started the commercialization in the context of "prodotti a marchio" of Atlantic salmon farmed following prescriptions reported in terms of specification that prohibits the use of synthetic and GM pigments in the feeds. In collaboration with this supermarket company, the Faculty of Veterinary Medicine of Camerino University carried out the quali-quantitative assessments on the presence of molecules and relative isomers that distinguish the natural carotenoid pigment from the synthetic one. Skinned portion of fillet (10g) were collected from dorsal muscle (retro-cranial, central and caudal region), mixed and homogenized and repeatedly extracted with acetone until they were colourless. The pooled extract were filtered and an aliquot (10ml) was centrifugated (2200xg, 5min). The astaxanthin content in the supernatant was determined by HPLC using a Varian ProStar instrument equipped with UV/vis detector using an external astaxanthin standard at detection wavelength 470nm. Analysis was performed on a Varian Kromasil 100 C 18 250x0.3 mm according to Bjerkeng et al. (1997). Identification and determination of stereoisomers were carried out by means of a Sumichiral a-phenylglicine 250x4.6mm column following Abu-Lafi and Turujman method (1999). The analysis performed on all the organic fish have demonstrated the exclusive content of natural pigment. In this group (b.w.=3.9-4.4kg), C-Card for salmonids ranged between 26±1 in 2004 and 21.5±1.3 in 2005 and 21.5±2.1 in 2006. Astaxanthin and isomers decreased from 5.6±0.3mg/kg in 2004 to 2.9±1.1mg/kg in 2006. The low-cost non organic salmon group (b.w.=4.5-4.6kg) resulted pigmented only with synthetic carotenoids and C-card for salmonids ranged between 27.3 in 2004 and 23.7 in 2005 whereas in 2006 it was observed equal to 27. Also in this batch, astaxanthin and isomers decreased passing from 6.5mg/kg in 2004 to 4.9mg/kg in 2006

    Molecular Cloning and Characterization of the Human Diacylglycerol Kinase β (DGKβ) Gene ALTERNATIVE SPLICING GENERATES DGKβ ISOTYPES WITH DIFFERENT PROPERTIES

    Get PDF
    Diacylglycerol kinases are key modulators of levels of diacylglycerol, a second messenger involved in a variety of cellular responses to extracellular stimuli. A number of diacylglycerol kinases encoded by separate genes are present in mammalian genomes. We have cloned cDNAs encoding several isoforms of the human homologue of the rat diacylglycerol kinase β gene and characterized two such isoforms that differ at their carboxyl terminus through alternative splicing and the usage of different polyadenylation signals. Quantitative analysis of gene expression in a panel of human tissue cDNAs revealed that transcripts corresponding to both isoforms are co-expressed in central nervous system tissues and in the uterus, with one variant being expressed at relatively higher levels. As green fluorescent protein fusions, the two isoforms displayed localization to different subcellular compartments, with one variant being associated with the plasma membrane, while the other isoform was predominantly localized within the cytoplasm. Differences were also observed in their subcellular localization in response to phorbol ester stimulation. Enzymatic assays demonstrated that the two isoforms display comparable diacylglycerol kinase activities. Therefore, the human diacylglycerol kinase β gene can generate several enzyme isoforms, which can display different expression levels and subcellular localization but similar enzymatic activities in vitro

    Lack of replication of genetic associations with human longevity

    Get PDF
    The exceptional longevity of centenarians is due in part to inherited genetic factors, as deduced from data that show that first degree relatives of centenarians live longer and have reduced overall mortality. In recent years, a number of groups have performed genetic association studies on long-living individuals (LLI) and young controls to identify alleles that are either positively or negatively selected in the centenarian population as consequence of a demographic pressure. Many of the reported studies have shown genetic loci associated with longevity. Of these, with the exception of APOE, none have been convincingly reproduced. We validated our populations by typing the APOE locus. In addition, we used 749 American Caucasian LLI, organized in two independent tiers and 355 American Caucasian controls in the attempt to replicate previously published findings. We tested Klotho (KL)-VS variant (rs952706), Cholesteryl Ester Transfer Protein (CETP) I405V (rs5882), Paraoxonase 1 (PON1) Q192R (rs662), Apolipoprotein C-III (APOC3) -641C/A (rs2542052), Microsomal Transfer Protein (MTP) -493G/T (rs2866164) and apolipoprotein E (APOE) epsilon2 and epsilon4 isoforms, (rs7412 and rs429358) haplotypes respectively. Our results show that, at present, except for APOE, none of the selected genes show association with longevity if carefully tested in a large cohort of LLI and their controls, pointing to the need of larger populations for case-control studies in extreme longevity

    Association of FOXO3A locus with extreme longevity in the Southern Italian Centenarian Study

    Get PDF
    A number of potential candidate genes in a variety of biological pathways have been associated with longevity in model organisms. Many of these genes have human homologs and thus have the potential to provide insights into human longevity. Recently, several studies suggested that FOXO3A functions as a key bridge for various signaling pathways that influence aging and longevity. Interestingly, Willcox and colleagues identified several variants that displayed significant genotype-gender interaction in male human longevity. In particular, a nested case-control study was performed in an ethnic Japanese population in Hawaii, and five candidate longevity genes were chosen based on links to the insulin-insulin-like growth factor-1 (IGF-1) signaling pathway. In the Willcox study, the investigated genetic variations (rs2802292, rs2764264, and rs13217795) within the FOXO3A gene were significantly associated with longevity in male centenarians. We validated the association of FOXO3A polymorphisms with extreme longevity in males from the Southern Italian Centenarian Study. Particularly, rs2802288, a proxy of rs2802292, showed the best allelic association-minor allele frequency (MAF) = 0.49; p = 0.003; odds ratio (OR) = 1.51; 95% confidence interval (CI), 1.15-1.98). Furthermore, we undertook a meta-analysis to explore the significance of rs2802292 association with longevity by combining the association results of the current study and the findings coming from the Willcox et al. investigation. Our data point to a key role of FOXO3A in human longevity and confirm the feasibility of the identification of such genes with centenarian-controls studies. Moreover, we hypothesize the susceptibility to the longevity phenotype may well be the result of complex interactions involving genes and environmental factors but also gender

    Changes in microphytobenthos fluorescence over a tidal cycle: implications for sampling designs

    Get PDF
    Intertidal microphytobenthos (MPB) are important primary producers and provide food for herbivores in soft sediments and on rocky shores. Methods of measuring MPB biomass that do not depend on the time of collection relative to the time of day or tidal conditions are important in any studies that need to compare temporal or spatial variation, effects of abiotic factors or activity of grazers. Pulse amplitude modulated (PAM) fluorometry is often used to estimate biomass of MPB because it is a rapid, non-destructive method, but it is not known how measures of fluorescence are altered by changing conditions during a period of low tide. We investigated this experimentally using in situ changes in minimal fluorescence (F) on a rocky shore and on an estuarine mudflat around Sydney (Australia), during low tides. On rocky shores, the time when samples are taken during low tide had little direct influence on measures of fluorescence as long as the substratum is dry. Wetness from wave-splash, seepage from rock pools, run-off, rainfall, etc., had large consequences for any comparisons. On soft sediments, fluorescence was decreased if the sediment dried out, as happens during low-spring tides on particularly hot and dry days. Surface water affected the response of PAM and therefore measurements used to estimate MPB, emphasising the need for care to ensure that representative sampling is done during low tide

    Protecting the environment through insect farming as a means to produce protein for use as livestock, poultry, and aquaculture feed

    Get PDF
    Securing protein for the approximate 10 billion humans expected to inhabit our planet by 2050 is a major priority for the global community. Evidence has accrued over the past 30 years that strongly supports and justifies the sustainable use of insects as a means to produce protein products as feed for pets, livestock, poultry, and aquacultured species. Researchers and entrepreneurs affiliated with universities and industries, respectively, from 18 nations distributed across North and South America, Europe, Asia, Africa and Australia contributed to the development of this article, which is an indication of the global interest on this topic. A brief overview of insects as feed for the aquaculture industry along with a review of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae), as a model for such systems is provided

    One ligand, two regulators and three binding sites: How KDPG controls primary carbon metabolism in Pseudomonas

    Get PDF
    Effective regulation of primary carbon metabolism is critically important for bacteria to successfully adapt to different environments. We have identified an uncharacterised transcriptional regulator; RccR, that controls this process in response to carbon source availability. Disruption of rccR in the plant-associated microbe Pseudomonas fluorescens inhibits growth in defined media, and compromises its ability to colonise the wheat rhizosphere. Structurally, RccR is almost identical to the Entner-Doudoroff (ED) pathway regulator HexR, and both proteins are controlled by the same ED-intermediate; 2-keto-3-deoxy-6-phosphogluconate (KDPG). Despite these similarities, HexR and RccR control entirely different aspects of primary metabolism, with RccR regulating pyruvate metabolism (aceEF), the glyoxylate shunt (aceA, glcB, pntAA) and gluconeogenesis (pckA, gap). RccR displays complex and unusual regulatory behaviour; switching repression between the pyruvate metabolism and glyoxylate shunt/gluconeogenesis loci depending on the available carbon source. This regulatory complexity is enabled by two distinct pseudo-palindromic binding sites, differing only in the length of their linker regions, with KDPG binding increasing affinity for the 28 bp aceA binding site but decreasing affinity for the 15 bp aceE site. Thus, RccR is able to simultaneously suppress and activate gene expression in response to carbon source availability. Together, the RccR and HexR regulators enable the rapid coordination of multiple aspects of primary carbon metabolism, in response to levels of a single key intermediate

    A novel ΔNp63-dependent immune mechanism improves prognosis of HPV-related head and neck cancer.

    Full text link
    peer reviewed[en] BACKGROUND: Deconvoluting the heterogenous prognosis of Human Papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OSCC) is crucial for enhancing patient care, given its rapidly increasing incidence in western countries and the adverse side effects of OSCC treatments. METHODS: Transcriptomic data from HPV-positive OSCC samples were analyzed using unsupervised hierarchical clustering, and clinical relevance was evaluated using Kaplan-Meier analysis. HPV-positive OSCC cell line models were used in functional analyses and phenotypic assays to assess cell migration and invasion, response to cisplatin, and phagocytosis by macrophages in vitro. RESULTS: We found, by transcriptomic analysis of HPV-positive OSCC samples, a ΔNp63 dependent molecular signature that is associated with patient prognosis. ΔNp63 was found to act as a tumor suppressor in HPV-positive OSCC at multiple levels. It inhibits cell migration and invasion, and favors response to chemotherapy. RNA-Seq analysis uncovered an unexpected regulation of genes, such as DKK3, which are involved in immune response-signalling pathways. In agreement with these observations, we found that ΔNp63 expression levels correlate with an enhanced anti-tumor immune environment in OSCC, and ΔNp63 promotes cancer cell phagocytosis by macrophages through a DKK3/NF-κB-dependent pathway. CONCLUSION: Our findings are the first comprehensive identification of molecular mechanisms involved in the heterogeneous prognosis of HPV-positive OSCC, paving the way for much-needed biomarkers and targeted treatment
    corecore