188 research outputs found

    Translations and dynamics

    Full text link
    We analyze the role played by local translational symmetry in the context of gauge theories of fundamental interactions. Translational connections and fields are introduced, with special attention being paid to their universal coupling to other variables, as well as to their contributions to field equations and to conserved quantities.Comment: 22 Revtex pages, no figures. Published version with minor correction

    Thresholds for epidemic spreading in networks

    Get PDF
    We study the threshold of epidemic models in quenched networks with degree distribution given by a power-law. For the susceptible-infected-susceptible (SIS) model the activity threshold lambda_c vanishes in the large size limit on any network whose maximum degree k_max diverges with the system size, at odds with heterogeneous mean-field (HMF) theory. The vanishing of the threshold has not to do with the scale-free nature of the connectivity pattern and is instead originated by the largest hub in the system being active for any spreading rate lambda>1/sqrt{k_max} and playing the role of a self-sustained source that spreads the infection to the rest of the system. The susceptible-infected-removed (SIR) model displays instead agreement with HMF theory and a finite threshold for scale-rich networks. We conjecture that on quenched scale-rich networks the threshold of generic epidemic models is vanishing or finite depending on the presence or absence of a steady state.Comment: 5 pages, 4 figure

    Mean-field diffusive dynamics on weighted networks

    Get PDF
    Diffusion is a key element of a large set of phenomena occurring on natural and social systems modeled in terms of complex weighted networks. Here, we introduce a general formalism that allows to easily write down mean-field equations for any diffusive dynamics on weighted networks. We also propose the concept of annealed weighted networks, in which such equations become exact. We show the validity of our approach addressing the problem of the random walk process, pointing out a strong departure of the behavior observed in quenched real scale-free networks from the mean-field predictions. Additionally, we show how to employ our formalism for more complex dynamics. Our work sheds light on mean-field theory on weighted networks and on its range of validity, and warns about the reliability of mean-field results for complex dynamics.Comment: 8 pages, 3 figure

    A cosmological model in Weyl-Cartan spacetime

    Get PDF
    We present a cosmological model for early stages of the universe on the basis of a Weyl-Cartan spacetime. In this model, torsion TαT^{\alpha} and nonmetricity QαβQ_{\alpha \beta} are proportional to the vacuum polarization. Extending earlier work of one of us (RT), we discuss the behavior of the cosmic scale factor and the Weyl 1-form in detail. We show how our model fits into the more general framework of metric-affine gravity (MAG).Comment: 19 pages, 5 figures, typos corrected, uses IOP style fil

    The Husain-Kuchar Model: Time Variables and Non-degenerate Metrics

    Get PDF
    We study the Husain-Kuchar model by introducing a new action principle similar to the self-dual action used in the Ashtekar variables approach to Quantum Gravity. This new action has several interesting features; among them, the presence of a scalar time variable that allows the definition of geometric observables without adding new degrees of freedom, the appearance of a natural non-degenerate four-metric and the possibility of coupling ordinary matter.Comment: LaTeX, 22 pages, accepted for publication in Phys. Rev.

    Generation of uncorrelated random scale-free networks

    Get PDF
    Uncorrelated random scale-free networks are useful null models to check the accuracy an the analytical solutions of dynamical processes defined on complex networks. We propose and analyze a model capable to generate random uncorrelated scale-free networks with no multiple and self-connections. The model is based on the classical configuration model, with an additional restriction on the maximum possible degree of the vertices. We check numerically that the proposed model indeed generates scale-free networks with no two and three vertex correlations, as measured by the average degree of the nearest neighbors and the clustering coefficient of the vertices of degree kk, respectively

    Slow dynamics and rare-region effects in the contact process on weighted tree networks

    Get PDF
    We show that generic, slow dynamics can occur in the contact process on complex networks with a tree-like structure and a superimposed weight pattern, in the absence of additional (non-topological) sources of quenched disorder. The slow dynamics is induced by rare-region effects occurring on correlated subspaces of vertices connected by large weight edges, and manifests in the form of a smeared phase transition. We conjecture that more sophisticated network motifs could be able to induce Griffiths phases, as a consequence of purely topological disorder.Comment: 12 pages, 10 figures, final version appeared in PR

    Diffusion-annihilation processes in complex networks

    Get PDF
    We present a detailed analytical study of the A+AA+A\to\emptyset diffusion-annihilation process in complex networks. By means of microscopic arguments, we derive a set of rate equations for the density of AA particles in vertices of a given degree, valid for any generic degree distribution, and which we solve for uncorrelated networks. For homogeneous networks (with bounded fluctuations), we recover the standard mean-field solution, i.e. a particle density decreasing as the inverse of time. For heterogeneous (scale-free networks) in the infinite network size limit, we obtain instead a density decreasing as a power-law, with an exponent depending on the degree distribution. We also analyze the role of finite size effects, showing that any finite scale-free network leads to the mean-field behavior, with a prefactor depending on the network size. We check our analytical predictions with extensive numerical simulations on homogeneous networks with Poisson degree distribution and scale-free networks with different degree exponents.Comment: 9 pages, 5 EPS figure

    Random walks and search in time-varying networks

    Get PDF
    The random walk process underlies the description of a large number of real world phenomena. Here we provide the study of random walk processes in time varying networks in the regime of time-scale mixing; i.e. when the network connectivity pattern and the random walk process dynamics are unfolding on the same time scale. We consider a model for time varying networks created from the activity potential of the nodes, and derive solutions of the asymptotic behavior of random walks and the mean first passage time in undirected and directed networks. Our findings show striking differences with respect to the well known results obtained in quenched and annealed networks, emphasizing the effects of dynamical connectivity patterns in the definition of proper strategies for search, retrieval and diffusion processes in time-varying network

    Diffusion-annihilation processes in complex networks

    Get PDF
    We present a detailed analytical study of the A+AA+A\to\emptyset diffusion-annihilation process in complex networks. By means of microscopic arguments, we derive a set of rate equations for the density of AA particles in vertices of a given degree, valid for any generic degree distribution, and which we solve for uncorrelated networks. For homogeneous networks (with bounded fluctuations), we recover the standard mean-field solution, i.e. a particle density decreasing as the inverse of time. For heterogeneous (scale-free networks) in the infinite network size limit, we obtain instead a density decreasing as a power-law, with an exponent depending on the degree distribution. We also analyze the role of finite size effects, showing that any finite scale-free network leads to the mean-field behavior, with a prefactor depending on the network size. We check our analytical predictions with extensive numerical simulations on homogeneous networks with Poisson degree distribution and scale-free networks with different degree exponents.Comment: 9 pages, 5 EPS figure
    corecore