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Thresholds for Epidemic Spreading in Networks
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We study the threshold of epidemic models in quenched networks with degree distribution given by a
power-law. For the susceptible-infected-susceptible model the activity threshold A, vanishes in the large size
limit on any network whose maximum degree k,,,, diverges with the system size, at odds with heterogeneous
mean-field (HMF) theory. The vanishing of the threshold has nothing to do with the scale-free nature of the
network but stems instead from the largest hub in the system being active for any spreading rate A > 1//kmax
and playing the role of a self-sustained source that spreads the infection to the rest of the system. The
susceptible-infected-removed model displays instead agreement with HMF theory and a finite threshold for
scale-rich networks. We conjecture that on quenched scale-rich networks the threshold of generic epidemic
models is vanishing or finite depending on the presence or absence of a steady state.
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The heterogeneous pattern of a network can have dra-
matic effects on the behavior of dynamical processes run-
ning on top of it [1], in particular, when the distribution of
the number k of contacts (the degree of an element or
vertex) exhibits long tails, as expressed by a power-law
degree probability with the asymptotic form P(k) ~ k=7
[2]. An example that has attracted a great deal of interest
due to its practical real-world implications is the modeling
of epidemic spreading on contact networks [3]. The sim-
plest of these models is the SIS model [4], in which each
vertex (individual) can be in one of two states, either
susceptible, or infected. Susceptibles become infected by
contact with infected individuals, with a rate proportional
to the number of infected contacts times a given spreading
rate A. Infected individuals on the other hand become
healthy again with a rate that can be set arbitrarily equal
to unity. The model allows thus individuals to contract the
infection time and again, leading, in the infinite network
size limit, to a sustained infected steady state for values of
A larger than an epidemic threshold A.. In the SIR model
[4], on the other hand, infected individuals recover (or die)
and cannot change further their state. No steady state is
now allowed, but a threshold still exists above which the
total number of infected individuals, starting from a very
small infected seed, reaches a finite fraction of the network.
The analysis of these and other models [1], performed via a
mean-field theory modified to take into account the het-
erogeneity of the network substrate [5,6], led to the far-
reaching conclusion that topological fluctuations, as mea-
sured by the second moment of the degree distribution (k?),
can have profound effects in many types of dynamics [1,6].
Thus, for example, in the SIS model, the threshold takes
the values, at the mean-field level, A, = (k)/(k?). For a
long-tailed degree distribution with power-law form, the
second moment diverges for v = 3, and one obtains the
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remarkable result of a vanishing epidemic threshold in the
thermodynamic limit. These results have led to the wide-
spread belief in the distinction between scale-free networks
with v = 3, where topology is highly relevant, and scale-
rich networks with y >3, where dynamical processes
exhibit an essentially homogeneous mean-field behavior.

In this Letter, building on some results previously re-
ported, we present evidence that this belief is not correct
for the SIS model on quenched networks (i.e., networks
whose adjacency matrix is fixed in time) and that the scale-
free nature of the contact pattern has no crucial effect on
the value of the epidemic threshold. We investigate the
physical origin of this result, its validity for generic net-
work structures and its consequences. On the other hand
we show that for the SIR model the picture is different, a
zero threshold occurring only in scale-free quenched
networks.

While heterogeneous mean-field (HMF) theory is exact
on annealed networks (i.e., networks whose adjacency
matrix in fixed only in average [6]), results beyond HMF
theory for the SIS process on quenched networks (QN)
have appeared in different contexts and with various levels
of rigor. Already in 2003, Wang et al. [7] argued that the
epidemic threshold on an arbitrary undirected graph is set
by the largest eigenvalue A of the adjacency matrix,

A=Ay )

see also [8,9]. The relevance of Eq. (1) becomes evident
when it is complemented with the results of Chung et al.
[10], who calculated the largest eigenvalue of the adja-
cency matrix for a class of finite graphs with degrees
distributed according to a power law, obtaining
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where N is the network size, k., is the network cutoff or
degree of the most connected node (averaged over many
network realizations [11]), and ¢; are constants of order 1.
The cutoff k. is a growing function of the network
size for uncorrelated scale-free networks, taking the value
k, ~ N'2for y = 3 and k. ~ N~V for y > 3 [12]. For
v > 3 the ratio of the moments is finite and it is clear that
the largest eigenvalue is governed by k.. Noticeably this
remains true also for 5/2 < y <3, since in that range
(k2 /{k) ~ k¥" < Jk.. Only for 2 < y < 5/2 the largest
eigenvalue is set by the moments of the degree distribution.
Combining Egs. (1) and (2), the behavior of the threshold
for the SIS model in a power-law distributed network is, for
sufficiently large size,

{WE y>5/2
Ae=1 %

, 3)

see also [13]. Since k. grows as a function of N for any vy, the
consequence of Eq. (3) is remarkable: In any uncorrelated
quenched random network with power-law distributed con-
nectivities, the epidemic threshold for SIS goes to zero as the
system size goes to infinity. This has nothing to do with
the scale-free nature of the degree distribution: It is always
true as long as the cutoff k. diverges. Remarkably the thresh-
old goes to zero also for Erdos-Rényi graphs (although
logarithmically slow), for which a formula similar to
Eq. (2) exists [14]. Different approaches [13,15,16], have
also pointed out that in the thermodynamic limit, the system
is active for any A > 0. These results, however, have gone
largely unnoticed within the statistical physics community.

A first issue raised by Eq. (3) concerns the fact that, as any
critical point, the epidemic threshold is well defined only in
the thermodynamic limit. In a finite system, the dynamics is
always doomed to fall into the healthy, absorbing state, even
far above the threshold, due to stochastic fluctuations. The
threshold for a finite network of size N must therefore be
intended as the value separating the regime A < A, for
which the epidemics decays exponentially fast [so that the
expected survival time is of the order 7 ~ In(V)] from the
regime A > A, where the survival time grows exponentially
with N to some power, 7 ~ V", with a > 0.

To investigate the validity of these results we have
performed numerical simulations of the SIS model on
quenched scale-rich networks with y = 4.5 and minimum
degree k,,;, = 3, built using the uncorrelated configuration
model [17]. In order to compare results with the predic-
tions in Eq. (3) one must take into account that the actual
maximum degree k., in each network realization is a
random variable, with average value (k) = k.. In par-
ticular, in the case y > 3, one can see [18] that both the
mean and the standard deviation of k,,, scale as k, ~
NYO=D_ implying that k,,, always shows large fluctua-
tions for different realizations of the degree sequence.
Therefore, we first consider networks in which k,,,, has a

fixed value, equal to the mean &, numerically estimated for
the chosen system size N. In Fig. 1 we plot the density p,,
calculated only for surviving runs, as a function of N for
different values of A [19]. Should the transition occur at a
fixed value of A, p, would go to a constant for A > A,
decay exponentially for A < A, and as a power law exactly
at the transition. A completely different behavior is ob-
served: for all values of A, the curves are bent upward,
indicating that the system is active for any A. This excludes
the presence of a finite threshold for diverging N. While
Eq. (1) holds for SIS on any graph, Eq. (2) was instead
obtained for a specific network model (intrinsically corre-
lated for vy <3 and uncorrelated for y >3 [12]). For
generic topologies, it is simple to show [11] that \/k, is a
lower bound for the largest eigenvalue of the adjacency
matrix. This allows us to conclude that, unless the degree
distribution is strictly bounded from above, the threshold
for SIS on any graph vanishes in the thermodynamic limit.

How generic are these results? Prakash et al. [9] have
recently argued that Eq. (1) is valid for all epidemic
processes, regardless of their particular microscopic de-
tails. To check this claim, we consider the SIR model. At
the HMF level, the threshold takes the value ASR =
(ky/[{k*Y — (k)] [20,21] and is therefore finite for scale-
rich networks with y > 3. From the analysis in Eq. (3), on
the other hand, it should be vanishingly small in the large
network limit, according to Ref. [9]. We have checked this
possibility by performing numerical simulations of the SIR
model on networks with y = 4.5 and different values of NV,
with fixed kp,x = (kmay)- In this case, the HMF estimated
threshold takes the value ASR =~ 0.31, independent of the
network size, while the predictions from Eq. (3) are AS'R ~
0.0567, 0.0796, and 0.1118 for the different network sizes
considered. In Fig. 2 we report the final density of infected
individuals R as a function of the spreading rate A, starting
from a single randomly chosen infected node. The predic-
tion of HMF theory seems in this case to be much more
accurate than Eq. (3), contrary to the generic claim made in
Ref. [9]: The threshold remains finite in the large N limit.
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FIG. 1 (color online). Density of active sites for long times
(restricted to surviving runs) in the SIS model on QN as a
function of system size N, for y = 4.5 and different values of
the parameter A. Notice that the straight line for A = 0.03 is due
to the fact that no density smaller than 1/N can occur.
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FIG. 2 (color online). Total number R of infected individuals
in the SIR model on QN of different size N as a function of the
spreading rate A. Networks have y = 4.5.

To understand the different behavior of the two models
we look at the origin of the incorrect HMF prediction for
SIS in QN. From a mathematical point of view, the HMF
approach is equivalent [6] to replacing the QN with given
adjacency matrix a;; by an annealed network with an
averaged adjacency matrix, a;; [6,22]. In the uncorrelated
case this matrix reduces to @;; = k;k;/[N(k)], which has a
unique nonzero eigenvalue Ay = (k2)/(k). Hence, the an-
nealed network approximation destroys the detailed struc-
ture of the eigenvalue spectrum of QN and preserves the
correct largest eigenvalue only for y < 5/2. This basic
feature, and not (as suggested in Ref. [16]) the disregard
of dynamical correlations, is at the root of the inaccuracy of
the HMF approach. A more physical insight comes from
the analysis of a star graph with one center connected
to knax leaves of degree 1. In this case the largest eigen-
value of the adjacency matrix is Ay = \/kp.x Which
implies A, = 1/\/kp.x. The same result can be easily
recovered by writing the rate equations for the probability
Pmax (p1) for the center (leaves) to be active, namely
Pmax = ~Pmax T (1 = pma) p1Akimy  and  p; = —p+
(I = p1)pmaxA. Imposing the steady-state condition one
finds

)‘kaax =1
(1 + Ak )’

ANy — 1

TSV O

Pmax = P1
and hence the threshold condition above. The message of
Eq. (4) for a generic quenched random graph is strong:
Independently from all the rest of the system, for A >
1/+/kmax the subgraph composed by the node with degree
kmax and its neighbors is in the active state. This core of
activity provides a self-sustained source of infection that,
since in the full graph the neighbors of the hub are not
leaves, can transfer the activity to their other neighbors
and spread in this way the epidemics to a finite fraction of
vertices. This is confirmed by Fig. 3, showing the number of
actives nodes in surviving runs, N, on a full network with
v = 3.5 and on a star graph with the same k., [23]. For
kpax < 1/A? the values of N, in the full network and in the
star graph are comparable: both systems are subcritical and
the subgraph centered around the node with degree ki, is
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FIG. 3 (color online). Number N, of active nodes in surviving
runs for values of A smaller than the threshold predicted by HMF
(A.(HMF) = 0.138...) as a function of k,,, compared with the
same quantity for star graphs. Networks have y = 3.5.

where activity lingers before disappearing. For k,, > 1/A?
the star graph becomes active and N, becomes asymptoti-
cally proportional to k. In the full network instead, the
asymptotic behavior is Ny ~ k?{l;xl ~ N, indicating that the
active state is endemic: the hub spreads the activity to a
finite fraction of the whole system. Reaching the fully
endemic state requires larger systems for small A, but
nothing changes qualitatively for any A > 0.

Understanding the behavior of SIS allows us to unravel
why things go differently for SIR. In the former case, the
possibility for hubs to be reinfected multiple times, which
allows the presence of a steady state, boosts their impact on
the dynamics. In the case of SIR, on the other hand, high-
degree vertices can only be infected once and this strongly
limits their role in the dynamics. Based on this observation,
it is natural to conjecture that epidemic models allowing a
steady state, such as SIS, will lead to a null threshold in any
infinite QN, while all models without a steady state will
conform with HMF theory, with a finite threshold on scale-
rich topologies.

The strong effect of the hub in the dynamics raises
further issues on the SIS model. While fixing the value of
kmax to its ensemble average leads to results consistent with
the presence of a nonzero threshold in finite systems, as
implied by Eq. (3), if this constraint is relaxed, k,,,, has
large sample to sample fluctuations leading to nontrivial
consequences. In Fig. 4 we explore the effect of this
variability by comparing simulations performed at fixed
A and N, and different values of k. The growth of the
activity density for increasing k., indicates that the rela-
tion between the threshold (or the largest eigenvalue) and
cutoff k., Eq. (3), can in fact be refined, and be expressed in
terms of the actual maximum degree, A, = 1/\/kn.x [18].
However, the large variations of k., among different
realizations of the network with the same y and N do not
wash away as N diverges and severely hinder the determi-
nation of the threshold in simulations with unrestricted
kmax- As mentioned before, for y > 3 the standard devia-
tion of k., increases as the average value (kp.) ~
N'Y(=1) [18], and there is always a large sample to sample
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FIG. 4 (color online). Decay of the activity density for the
SIS model in networks with y = 4.5, N = 10°, A = 0.1 and
changing k..

variability. Hence an unrestricted sampling at fixed A un-
warrantedly averages networks with different thresholds
and effective time scales, some subcritical and some su-
percritical, making impossible even to determine the pres-
ence of a well-defined steady state. This fact is exemplified
in Fig. 4, where we plot for comparison the activity density
obtained averaging over networks with a freely varying
kmax- For -y <3 the situation depends on the way the net-
work is generated, and, in particular, on the way the upper
bound of the degree distribution M = N Ve grows [22]. If
o = 2 (uncorrelated configuration model [17]) or larger,
the quantity (k*)/(k) becomes sharply peaked as N grows
[22]. If instead w = 1, as in the normal configuration
model [24], the ratio (k*)/{k) (and hence the threshold)
wildly changes from realization to realization, with relative
fluctuations diverging as N2G-(r=2/(r=1 [22]. Notice
that in the intermediate region 5/2 < y < 3, the average
value of \/k,,, is larger than (k?)/{k) but, since fluctuations
of the latter diverge, for some network realizations the
actual threshold A, is much smaller than the value pre-
dicted by Eq. (3). We conclude that, unless y <3 and
® = 2, no average epidemic threshold can be properly
defined from a numerical point of view for networks with
unrestricted K,y .-

In summary, we have studied how the threshold for models
of epidemic spreading on quenched scale-rich networks
behaves as their size grows. The threshold for SIS model
always vanishes in the thermodynamic limit, due to the role
of hubs. This bears no relationship, at odds with the predic-
tions of HMF theory, with the divergence of the second
moment of the degree distribution, which is finite. For the
SIR model instead the threshold vanishes only for scale-free
topologies (either quenched or annealed), in agreement with
HMEF theory. We conjecture that these different types of
behavior are generic for systems possessing (or not) a steady
state. While the result of a vanishing threshold for SIS is exact
on guenched networks, it is however of limited interest from
an epidemiological perspective. The interaction patterns over
which real diseases spread generally vary over short time
scales [25], and are therefore better described by annealed
topologies [6], for which HMF theory works by definition,

and the threshold is finite for y > 3. From a statistical physics
point of view, instead, our results open a promising path
towards a better understanding of the scope and limits of
HMF theory as a theoretical tool to analyze dynamics on
heterogeneous networks.
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