
Perra, N., Baronchelli, A., Mocanu, D., Gonçalves, B., Pastor-Satorras, R. & Vespignani, A. (2012). 

Random walks and search in time-varying networks. Physical Review Letters (PRL), 109(23), doi: 

10.1103/PhysRevLett.109.238701 

City Research Online

Original citation: Perra, N., Baronchelli, A., Mocanu, D., Gonçalves, B., Pastor-Satorras, R. & 

Vespignani, A. (2012). Random walks and search in time-varying networks. Physical Review 

Letters (PRL), 109(23), doi: 10.1103/PhysRevLett.109.238701 

Permanent City Research Online URL: http://openaccess.city.ac.uk/2669/

 

Copyright & reuse

City University London has developed City Research Online so that its users may access the 

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are 

retained by the individual author(s) and/ or other copyright holders.  All material in City Research 

Online is checked for eligibility for copyright before being made available in the live archive. URLs 

from City Research Online may be freely distributed and linked to from other web pages. 

Versions of research

The version in City Research Online may differ from the final published version. Users are advised 

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact 

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/16409664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


ar
X

iv
:1

20
6.

28
58

v2
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  1
7 

Ja
n 

20
13

Random walks and search in time-varying networks

Nicola Perra,1 Andrea Baronchelli,1 Delia Mocanu,1 Bruno Gonçalves,1
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The random walk process underlies the description of a large number of real world phenomena.
Here we provide the study of random walk processes in time varying networks in the regime of time-
scale mixing; i.e. when the network connectivity pattern and the random walk process dynamics
are unfolding on the same time scale. We consider a model for time varying networks created from
the activity potential of the nodes, and derive solutions of the asymptotic behavior of random walks
and the mean first passage time in undirected and directed networks. Our findings show striking
differences with respect to the well known results obtained in quenched and annealed networks,
emphasizing the effects of dynamical connectivity patterns in the definition of proper strategies for
search, retrieval and diffusion processes in time-varying networks.

PACS numbers: 89.75.Hc, 05.40.Fb

Random walks on networks lie at the core of many
real-world dynamical processes, ranging from the nav-
igation and ranking of information networks to the
spreading of diseases and the routing of information
packets in large-scale infrastructures such as the Inter-
net [1–6]. In recent years, empirical evidence point-
ing out the heterogeneous topology of many real-world
networks has led to a large body of work focusing on
the properties of random walks in networks character-
ized by heavy tailed degree distributions and other fea-
tures such as clustering and community structure [1, 7–
12]. Although these studies provided a deeper under-
standing of processes of technological relevance such
as WWW navigation and ranking, they have mostly fo-
cused on the situation in which the time scale charac-
terizing the changes in the structure of the network and
the time scale describing the evolution of the process are
well separated [13–17]. While convenient for analytical
tractability, this limit is far from realistic in many sys-
tems including modern information networks, the dif-
fusion and search of information in microblogging sys-
tems and social networking platforms, sexually trans-
mitted diseases or the diffusion of ideas and knowledge
in social contexts. In all these cases, the concurrence of
contacts and their dynamical patterns are typically char-
acterized by a time scale comparable to that of the dif-
fusion process, motivating the study models able to ac-
count for effects of the time varying nature of networks
on dynamical processes [18–27] .

Motivated by the above problems we study the ran-
dom walk process in a fairly general class of time-
varying networks. Namely, we consider the activity
driven class of models for time-varying networks pre-
sented in Ref. [23] that allows for an explicit representa-
tion of dynamical connectivity patterns. We derive the
analytical solutions of the stationary state of the random

walk and the mean first passage time [28] in both di-
rected and undirected time varying networks. We find
that the behavior of the random walk and the ensuing
network discovery process in time varying networks is
strikingly different from those occurring in quenched
and annealed topologies [1, 3, 8, 29]. These results have
the potential to become a starting point for the defini-
tion of alternative strategies and mechanisms to explore
and retrieve information from networks, and character-
ize more accurately spreading and diffusion processes
in a wide range of dynamic social networks.

Activity driven network models focus on the activity
pattern of each node, which is used to explicitly model
the evolution of the connectivity pattern over time. Each
node i is characterized by a quenched, fixed, activity
rate ai, extracted from a distribution F (a), that repre-
sents the probability per unit time that a given node will
engage in an interaction and generate the corresponding
edge connecting it with other nodes in the system. In the
simplest formulation of the model, networks are gener-
ated according to the following memoryless stochastic
process [23]: i) At each time step t, the instantaneous
network Gt starts with N disconnected nodes; ii) With
probability ai∆t, each vertex i becomes active and gen-
erates m undirected links that are connected to m other
randomly selected vertices. Non-active nodes can still
receive connections from other active vertices; iii) At
time t + ∆t, all the edges in the network Gt are deleted
and the process starts over again to generate the net-
work Gt+∆t. It can be shown that the full dynamics of
the network is encoded in the activity rate distribution,
F (a), and that the time-aggregated measurement of net-
work connectivity yields a degree distribution that fol-
lows the same functional form as the distribution F (a).
This distribution can be assumed a priori or derived
from empirical data in the case of high quality data set
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FIG. 1. Activity driven random walk process. Active nodes
are shown in red and walkers are presented in green. Links
used by walkers to move from one node to another are shown
in solid red lines, while edges connecting empty nodes are
shown as dashed lines. Here we considered m = 2.

such as social/information networks [23].
Although the above model is memoryless, it can be

considered as the simplest yet non trivial setting for the
study of the concurrence of changes in connectivity pat-
tern of the network and the dynamical process unfold-
ing on its structure. We define the random walk process
on time varying networks as follows: at each time step
t the network Gt is generated, and the walker diffuses
for a time ∆t. After diffusion, at time t + ∆t, a new
network Gt+∆t is generated (see Figure 1). The concur-
rent dynamics of the random walker and the network
take thus place with the same time scale, which intro-
duces a feature not found in the equivalent processes
in quenched or annealed networks, namely that walk-
ers can get trapped in temporarily isolated nodes. In
other words, the diffusive dynamic of the particles is
”enslaved” to the local connectivity pattern of each node
so that effectively the diffusive process is transformed in
a ”transport” process defined concurrently by the net-
work dynamic and the particle diffusive process.

The probability Pi(t) that a random walker is in node
i at time t obeys the master equation:

Pi (t+∆t) = Pi (t)



1−
∑

j 6=i

Π∆t
i→j



+
∑

j 6=i

Pj (t)Π
∆t
j→i ,

(1)

where Π∆t
i→j is the propagator of the random walk, de-

fined as the probability that the walker moves from ver-
tex i to vertex j in a time interval ∆t. At any time t,
node i will be linked to node j if node i becomes ac-
tive and chooses to connect to node j (with probability
mai∆t/N ) or if node j becomes active and connects to
node i (with probability maj∆t/N ). In the first case, the
instantaneous average degree of node i, conditioned to
the fact that it has become active, is ki = m (1 + 〈a〉∆t),
while in the second case we have ki = 1+m〈a〉∆t, where
the average is conditioned to the fact that a vertex j has
fired and has connected to i. A walker in node i will
then have to chose which one of the ki connections to
follow. We focus on homogenous random walks. In this
case, the probability of moving from node i to node j is
inversely proportional to ki. Thus the propagator can be
written as

Π∆t
i→j =

mai∆t

N

1

m (1 + 〈a〉∆t)
+

maj∆t

N

1

1 +m〈a〉∆t

≃
∆t

N
(ai +maj) , (2)

where in the last expression we have neglected terms of
order higher than ∆t.

In order to obtain a system level description it is con-
venient to group nodes in the same activity class a, as-
suming that they are statistically equivalent, i.e. consid-
ering the limit N → ∞ [1, 6]. Let us define the num-
ber of walkers in a given node of class a at time t as

Wa (t) = [NF (a)]−1 W
∑

i∈a Pi (t), where W is the total
number of walkers in the systems. Considering Eq. (1)
in the limit ∆t → 0 we can write:

∂Wa (t)

∂t
= −aWa (t) + amw

−m〈a〉Wa (t) +

∫

a′Wa′ (t)F (a′) da′, (3)

where w ≡ W/N is the average density of walkers per
node, and we have considered the continuous a limit.
The first two terms are contributions due the activity
of the nodes in class a, active nodes which release all
the walkers they have and receive walkers originating
from all the others nodes. The final two terms repre-
sent the contribution to inactive nodes due to the activ-
ity of the nodes in all the other classes. The stationary
state of the process is defined by the infinite time limit

limt→∞ Ẇa (t) = 0. Using this condition in Eq. (3) we
find the stationary solution

Wa =
amw + φ

a+m〈a〉
, (4)

characterizing the stationary state of the random walk
process in activity driven networks, where φ =
∫

aF (a)Wada is the average number of walkers mov-
ing out of active nodes. In the stationary state this quan-
tity is constant, and we can evaluate it self-consistently,
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FIG. 2. Main plot: Stationary density Wa of random walkers
in activity driven networks with activity distribution F (a) ∼

a−γ . We consider γ = 2 (circles) and γ = 2.8 (diamonds).
Solid lines represent the analytical prediction Eq. (4). Inset:
Stationary density Wa for random walks on top of an activity
driven network with F (a) ∼ a−2, integrated over T = 50
time steps. The solid line corresponds to the curve Wa ∼ a,
fitting the simulation points for large value of a. Simulation
parameters: N = 105, m = 6, ǫ = 10−3 and w = 102. Averages
performed over 103 independent simulations.

which implies the equation:

φ =

∫

aF (a)
amw + φ

a+m〈a〉
da. (5)

By considering heavy-tailed activity distributions of the
form F (a) ∼ a−γ , the explicit solution for φ can be writ-
ten in terms of hypergeometric functions which can be
numerically evaluated. Heavy-tailed activity distribu-
tion have been empirically measured in real-world time
varying networks. [23].

To support the results of the analytical treatment, we
have performed extensive Monte Carlo simulations of
the random walk process in activity driven networks
with N = 105 nodes, m = 6, and w = 102 walk-
ers. In particular, we consider a power law distribu-
tion F (a) ∼ a−γ , with activity restricted in the inter-
val a ∈ [ǫ, 1], to avoid possible divergencies in the limit
a → 0. As shown in Figure 2, the analytical solution
reproduces with great accuracy the simulation results.
It is worth noticing that in quenched and annealed net-
works the number of walkers in each node of degree k,
is a linear function of the degree: Wk ∼ k [1, 8]. How-
ever, in time varying networks the number of walkers
is not a linear function of the activity, but saturates at
large values of a. The difference is due to the proper-
ties of the instantaneous network, where the nodes with
high activity have on average k ∼ m connections at
each time step, and therefore a limited capacity for col-
lecting walkers. This key feature cannot be recovered
from time-aggregated views of dynamical networks. To
clarify this question we compare numerical simulations
of walkers in a network obtained integrating the activ-
ity driven model with N = 105 nodes, m = 6 and
F (a) ∼ a−2 over T = 50 time steps with the results

obtained in the instantaneous network (see inset of Fig-
ure 2). The lack of a saturation is simply an artifact
of using the time-aggregated network and highlights
the importance of an appropriate consideration of the
time-varying feature of networks in the study of explo-
ration and spreading processes in dynamical complex
networks.

We focus next on the study the transport dynamics in
such networks by analyzing the mean first passage time
(MFPT) [8, 28]; i.e. the the average time needed for a
walker to arrive at node i starting from any other node
in the network. In other words, the MFPT is the average
number of steps needed to reach/find a specific target
with obvious consequences for network discovery pro-
cesses. Let us define p (i, n) as the probability that the
walker reaches the target node i for the first time at time
t = n∆t. Since each node is able, in principle, to connect
directly to any other node, this quantity is given simply

by p (i, n) = ξi (1− ξi)
n−1

, where ξi is the probability
that the random walker jumps to node i in a time in-
terval ∆t. From Eq. (2), the probability that a walker in
vertex j jumps to i in a time ∆t is given by Π∆t

j→i. Thus

we can write ξi =
∑

j(Wj/W )Π∆t
j→i, where we have re-

placed the probably that a single random walker is at
node j at time t by its steady state value Wj/W . The
MFPT can thus be estimated as:

Ti =
∞
∑

n=0

∆t np (i, n) =
∆t

ξi
=

NW

maiW +
∑

j ajWj

. (6)

Interestingly, the MFPT each node i is inversely propor-
tional to its activity plus a constant contribution from all
the other nodes, in clear contrast with what happens in
quenched and annealed networks where ξi is equivalent
to the stationary state of the random walk, ξi = Wi/W .
As before, the underlying cause of this fundamental dif-
ference is the fact that in activity driven networks the
walker can be trapped in a node with low activity for
several time steps. The form of ξi must then consider ex-
plicitly the dynamical connectivity patterns to account
for the resulting delays. Figure 3 confirms these results
with extensive Monte Carlo matching the analytical re-
sults presented in Eq. (6).

The previous approach can be readily extended to
the case of directed networks. By using the activity
driven framework is possible to define two types of
time-varying directed networks. When a node i is active
the m generated links could be outgoing edges (Type I)
or ingoing edges (Type II). For both types of directed
networks it is possible to write down the diffusion prop-
agator by following the same approach used in the undi-
rected case. In particular, it is possible to show that if we
define W I

a (t) and W II
a (t) as the number of walkers in

networks of Type I and II, respectively, their stationary
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FIG. 3. Main plot: MFPT of a random walker as a function of
the activity a in activity driven networks with activity distri-
bution F (a) ∼ a−2. Full line corresponds to the theoretical
prediction Eq. (6). Right inset: MFPT as a function of activity
for directed Type I activity driven networks. Left inset: MFPT
as a function of activity for directed Type II activity driven net-
works. Simulation parameters: N = 104 (N = 103 for Type I,
blue dots), m = 6, and ǫ = 10−3. Averages performed over
103 independent simulations for each activity class.

values read as

W I
a =

w

a

1

〈 1
a
〉
; W II

a = aw
1

〈a〉
. (7)

While we will report the full calculation elsewhere, this
result can be intuitively understood by considering that
in Type I networks active nodes create outgoing links.
Walkers are thus more likely to diffuse out of these
nodes, meaning that the higher the activity, the smaller
the number of walkers in the nodes of that class. In Type
II networks, on the other hand, active nodes create in-
going links. Walkers are thus more likely to diffuse into
high activity nodes and the scaling of the stationary state
is linear with the activity. Interestingly the undirected
functional form of the stationary state is a combination
of these two different behaviors.

By following the same reasoning used for the undi-
rected case it is straightforward to derive the analytic
expression of the MFTP for directed activity networks,
namely:

T I
i =

NW
∑

j ajWj

; T II
i =

N

mai
. (8)

In the first case the MFPT is independent of the activity
of the considered node. The walker can move to node i
just when other active nodes create outgoing links point-
ing to i. In the second case, the MFPT is just proportional
to the activity of the node i and is not a function of the
activity of the others nodes. Also in this case we recover
that the propagator of the random walk for undirected
activity driven networks has these two symmetric con-
tributions that both contribute to the undirected MFPT.

The analytical results can be validated by means of
Monte Carlo simulations. The right inset of Figure 3

refers to activity networks of Type I. We fix N = 103,
m = 6, one walker and activities distributed according
to a power-law F (a) ∼ a−2. We then measured the
MFPT selecting 103 targets for each activity class. The
simulations are indistinguishable from the analytical re-
sult in Eq. (8). The left inset in Fig. 3 refers to activity
networks of Type II under the same simulation param-
eters except for the number of nodes fixed to N = 104

in this case. Again a perfect match is observed with the
analytical result Eq. (8).

From the above results it is evident that the dynamics
of time-varying networks significantly alters the stan-
dard picture achieved for dynamical processes in static
networks. Focusing on the specific case of activity
driven networks and the simple random walk process,
the present results open the path to a number of future
studies where the dynamics of the network will have to
be considered, in order to avoid misleading results in
the analysis of dynamical processes in most situation of
practical interest. Finally, we note that the time vary-
ing network model we have considered is Markovian
(memoryless) and lacking dynamical correlations, rife
in real dynamical networks [21]. The investigation of
the effects of these relevant properties on diffusion calls
for additional research efforts.
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