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Husain-Kuchař model: Time variables and nondegenerate metrics

J. Fernando Barbero G., Alfredo Tiemblo, and Romualdo Tresguerres
Centro de Fı´sica ‘‘Miguel Catalán,’’ Instituto de Matema´ticas y Fı́sica Fundamental, CSIC, Serrano 113 bis, 28006 Madrid, Spain
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We study the Husain-Kucharˇ model by introducing a new action principle similar to the self-dual action used
in the Ashtekar variables approach to quantum gravity. This new action has several interesting features, among
them the presence of a scalar time variable that allows the definition of geometric observables without adding
new degrees of freedom, the appearance of a natural nondegenerate four-metric, and the possibility of coupling
ordinary matter.@S0556-2821~98!06310-3#

PACS number~s!: 04.20.Cv, 04.20.Fy
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I. INTRODUCTION

In the long quest to understand general relativity~GR! the
use of toy models has a long tradition. This is especially t
in quantum gravity and quantum cosmology where they h
allowed us to obtain some, otherwise very difficult to g
information. However, this does not come without a pr
because one is usually forced to introduce very strong s
plifying assumptions and, quite often, some of the key f
tures of the theory are lost. Though a final judgement on
success of this approach can only be made once a cons
quantum gravity theory is found, it is possible, in princip
to get some clues on how well one is doing by consider
widely different toy models.

Bianchi models~see, for example, Ref.@1#! are obtained
by imposing homogeneity conditions on the gravitation
variables. Their high symmetry has the consequence of
ing most of the degrees of freedom of the full theory leav
only a finite number of them. They have been widely used
quantum cosmology mainly because the equations obta
upon quantization are more or less tractable.

There are other~less known! toy models that achieve th
goal of simplifying the theory by going in the opposite d
rection:addingdegrees of freedom. Chief among them is t
Husain-Kuchaˇr ~HK! model@2#. This model is quite interest
ing because it has some of the features that make GR
difficult to deal with in the quantum regime, in particula
diffeomorphism invariance, but is significantly simpler b
cause it lacks the Hamiltonian constraint~another important
source of difficulties in full GR!. This has the effect of
increasingthe number of degrees of freedom per space p
from 2 to 3.

To illustrate with a picture the different and compleme
tary roles played by these two approaches one can make
following analogy. Portray GR as a complicated, knotte
two-dimensional surfaceS embedded inR3. Working with
Bianchi models is something akin to trying to get inform
tion aboutS by looking at a finite number of points on i
The HK model, on the other hand, is like trying to gath
information by studying the wholeR3. Clearly some crucial
features are lost in both approaches but, still, they prov
570556-2821/98/57~10!/6104~9!/$15.00
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useful and complementary views aboutS.1

The HK model, in its usual formulation~see Ref.@3# for
some alternative descriptions!, can be conveniently derived
from an action principle very close to the self-dual action@4#
from which the Ashtekar approach to classical and quan
GR @5# can be found. The phase space of the Hamilton
description of both theories is the same: it is coordinatiz
by a SO~3! connection and a densitized~inverse! triad ca-
nonically conjugate to it. Their crucial difference is the a
sence of a Hamiltonian constraint in the HK model. T
usual interpretation of this lack of ‘‘dynamics’’ is the follow
ing. By using the frame field in terms of which the HK actio
is written2 one can build a degenerate four-metricgab and a
densitized vector fieldñ a ~that can be dedensitized by mea
of an auxiliary space-time foliation!. The lack of dynamics
can be seen as the fact that the Lie derivative ofgab in the
direction ofna is zero.

The four-dimensional metric that we can build from th
frame field in the HK action is degenerate. This can lead
the erroneous conclusion that the model describesonly de-
generate four-metrics; a fact that has induced some aut
to claim, for example, that ordinary matter cannot be coup
to the model. We will show that this is not the case in d
time but at this point we urge the reader to think about
following paradoxical situation. The fact that the Ham
tonian constraint is missing from the HK model means t
the constraint hypersurface of GR in the Ashtekar formu
tion is contained in the HK one, hence, every solution to G
~for example, Minkowski space-time! is a solution to the HK
model. How can we then describe these GR solutions
terms of the fields present in the HK action if we only ha
a 433 frame field available?

The solution to this problem that we give in the paper h
some unexpected implications that make it quite attract

1This analogy is, actually, a little bit more than that because
Hamiltonian formulation of GR can be understood as the study
phase space, of the hypersurface defined by the constraints.

2Being a 433 matrix it is neither a tetrad nor a triad.
6104 © 1998 The American Physical Society
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57 6105HUSAIN-KUCHAŘ MODEL: TIME VARIABLES AN D . . .
On one hand it provides an elegant way to define quan
geometric observables~such as areas and volumes! without
having to resort to increasing the number of physical degr
of freedom as in previous approaches@6,7#. On the other, it
allows the introduction of a kind of time variable in th
double sense that dynamics can be referred to it and also
the scalar constraint~that we need now in order to get th
correct counting of degrees of freedom! is linear in its ca-
nonically conjugate momentum~so that, upon quantization i
gives a Schro¨dinger-type of equation!.

The main result of the paper is that it is possible to obt
the HK model from an action principle~also related to the
self-dual action! that admits an interpretation in terms
nondegenerate four-dimensional metrics. This is achieved
introducing a scalar field that can be interpreted, in a se
that will be made more precise later, as the time varia
mentioned before. This will not only solve the paradox p
sented above but also will provide a means to couple o
nary matter thus enhancing the usefulness of HK as a
model. We hope that the possible interpretation of this sc
field as time will help to shed some light on the problem
time in full GR.

The paper is organized as follows. This introduction
followed by Sec. II where the usual formulation of th
Husain-Kucharˇ model is briefly reviewed. The new actio
principle, which is the object of this paper, is introduced
Sec. III where we derive it from the well known self-du
action for GR. The details of the Hamiltonian formulation
our model are spelled out in Sec. IV. There we thoroug
study the derivation of the constraints of the theory and d
cuss their interpretation. In Sec. V we compare the fi
equations in both the usual and the new formulation for
HK model in order to show that they are not in contradicti
~a nontrivial fact as the number of equations is different
both cases!. Section VI gives a different proof of the equiva
lence of our ‘‘nondegenerate’’ formulation and the usual o
at the Lagrangian level. We also show that the addition o
cosmological constant~made possible in our scheme by th
availability of a nondegenerate four-metric! does not lead us
beyond the HK model. We end the paper with Sec. V
where we give our conclusions and general comments,
an appendix that contains some details of the computat
needed to disentangle the constraints in our formulation.

II. THE HUSAIN-KUCHARˇ MODEL: A BRIEF REVIEW

We review in this section the HK model in its usual fo
mulation in order to describe its main features and collect
most important formulas for future reference. We start fro
the action@2#

S5
1

2 E
M

d4xh̃abcde i jkea
i eb

j Fcd
k , ~1!

where our notation is the following:M is a four-dimensional
manifoldM5R3S with S a three-dimensional manifold
~that we take compact and without boundary so that we
freely integrate by parts!. Curved space-time indices are re
resented by lower case Latin letters from the beginning
the alphabet. We will make no distinction between fou
dimensional and three-dimensional indices. The dimens
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ality of a certain field will be clear from the context. Th
three- and four-dimensional Levi-Civita tensor densities w
be denoted ash̃abc and h̃abcd, respectively~h> abc andh> abcd
are their inverses!. We use the convention of representing t
density weights of geometrical objects by using tildes abo
~positive! and below~negative! the stem letter representin
them. Internal SO~3! indices, running from 1 to 3 will be
denoted by Latin letters from the middle of the alphabet a
the internal Levi-Civita tensor ase i jk . We will also use a
SO~3! connectionAa

i (x) that defines a covariant derivativ
acting on internal indices as¹al i5]al i1e i jkAa

j lk and can
be extended to space-time indices by using any torsion-
space-time connection; none of the results that we prese
the paper will depend on the extension chosen. The curva
of Aa

i (x) is defined asFab
i 52] [aAb]

i 1e jk
i Aa

j Ab
k . The frame

field ea
i in the previous action is a 433 matrix; we will

reserve the name triad for its projection on the thre
dimensional slices used in the Hamiltonian formalism.

The field equations derived from Eq.~1! are

e i jke[b
j Fcd]

k 50,

e i jke[b
j ¹ccd]

k 50. ~2!

Some interesting features of Eq.~2! are summarized in the
following formulas:

ñ aFab
i 50,

ñ a¹ [aeb]
i 50,

Lna~ea
i ebi!50, ~3!

where ñ a5(1/3!)h̃ abcde i jkeb
i ec

j ed
k , na5ñ a/ẽ, and ẽ is de-

fined by means of an auxiliary foliation defined by a sca
function t asẽ[ñ a]at. Lna denotes the Lie derivative alon
the direction defined byna. The first two equations in Eq.~3!
explain why we do not have a dynamics in the model@2# ~the
projections of the field equations on to the direction norm
to the spatial slices are zero! while the last one, which is a
consequence of the others, displays this lack of evolution
the fact that the Lie derivative of the degenerate four-me
ea

i ebi alongna is zero.
The meaning of this model is best understood in

Hamiltonian framework. In order to define it we introduce
foliation by means of a scalar functiont and a congruence o
curves~nowhere tangent to the surfaces of the foliation! pa-
rametrized byt whose tangent vectors we denoteta. By
doing this we have thatta]at51 and, hence, the time deriva
tives can be interpreted as the Lie derivatives along the
rection defined byta. We can write Eq.~1! as

S5E dtE
S
d3x$Ȧa

i @h̃abce i jkeb
j ec

k#1A0
i ¹a@h̃abce i jkeb

j ec
k#

1e0
i @h̃abce i jkea

j Fbc
k #%,

where the overdots denote time derivatives of the fields~Lie
derivatives along the direction defined byta!, A0

i [taAa
i , and

e0
i [taea

i . After following the usual Dirac procedure@8# one
finds out that the phase space of the model is coordinat
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by a SO~3! connectionAa
i and a canonically conjugate den

sitized triadẼi
a . The first class constraints are

¹aẼi
a50,

Ẽi
aFab

i 50.

The first constraint~Gauss law! generates internal SO~3! ro-
tations whereas the second~known as vector constraint! gen-
erates spatial diffeomorphisms.3 As we can see there is n
scalar constraint so that we have three degrees of free
per space point.

III. FROM THE SELF-DUAL ACTION
TO THE HUSAIN-KUCHARˇ MODEL

In this section we introduce a modified action princip
for the Husain-Kucharˇ model that allows us to use four
dimensional, nondegenerate metrics in order to describ
We take as the starting point the self-dual action4 of Samuel,
Jacobson, and Smolin@4#

S52
1

2 E
M

d4xh̃abcdea
I eb

JFcdIJ
2 , ~4!

where nowea
I is a genuine tetrad field andI 50, . . . ,3 are

SO~4! indices,Fab
IJ2 is the curvature of an anti-self-dual con

nection Aa
2IJ defined by Fab

IJ252] [aAb]
2IJ12A[a

2IKAb]K
2 J .

Following Ref.@9# we write

Aa
2IJ[F 0 Aa

j

2Aa
i 2e i jkAak

G , ea
I [F2

1

2
va ea

i G ,
so that Eq.~4! becomes

S5
1

2 E
M

d4xh̃abcd@vaeb
i Fcdi1e i jkeaieb jFcdk#. ~5!

As we can see the~anti!-self-dual action can be obtained b
adding a term involving a one-form fieldva to the usual
Husain-Kucharˇ action~1!. A full discussion of Eq.~5! can be
found in Ref.@9#.

In the view of the previous formula it is natural to wond
what happens if instead of takingva as a general one-form
one considers it to be the gradient of a scalar¹af. Do we
still have GR or something else? Let us consider then
following action:

Ŝ5
1

2 E
M

d4xh̃ abcd@2ea
i Fbci¹df1e i jkeaieb jFcdk#. ~6!

Before attempting to unravel its physical meaning, some p
liminary remarks are in order. First of all the action is n

3Diffeomorphisms are actually generated by a linear combina
of the Gauss law and the vector constraint.

4We actually use anti-self-dual fields for calculational purpose
m

it.

e

e-

longer SO~4! invariant5 although it is obviously SO~3! in-
variant. Second, we see now thatS is linear in the time
derivatives off so we expect to have a scalar constra
linear in its canonically conjugate momentum~that after
quantization will lead to a Schro¨dinger type of equation!. It
is natural to wonder if Eq.~6! could be an action for gravity
~with an explicit time variable given by the scalar fieldf!.
The answer turns out to be in the negative though, at the
of the day, one discovers that Eq.~6! is still interesting in its
own right. In order to check whether Eq.~6! describes GR or
not we consider the field equations coming from Eq.~4!
~remembering that we take nowea

05¹af!. The field equa-
tion obtained by varying with respect toAIJ

2 is

@¹ [a~eb
I ec]

J !#250. ~7!

From Eq.~7! we find out immediately thatAIJ
2 is equal to the

anti-self-dual part of the SO~4! connectionGa
IJ compatible

with ea
I defined by

Daeb
I []aeb

I 2Gab
c ec

I 1Ga
IKebK50, ~8!

where Gab
c is the Christoffel symbol of the four-metric

gab[ea
I ebI . Notice that, generically, the determinant ofea

I

det ea
I 5

1

3!
h̃ abcd~¹af!e i jkebiec jedk

is different from zero so that we can invert Eq.~8! to write
Ga

IJ in terms of ea
I and its derivatives. By substituting

Aa
2IJ5Ga

2IJ@e,f# back into Eq.~4! we get

S5E
M

d4yAg@e,f#R@e,f#,

where R is the scalar curvature ofgab[ea
I ebI5¹af¹bf

1ea
i ebi . If, by choosingea

i andf we can generate arbitrar
and noncorrelatedgab@e,f#(x) and

dgab@e,f#~x!5E
M

d4yFdgab~x!

dec
i ~y!

dec
i ~y!1

dgab~x!

df~y!
df~y!G

thenS must be an action for full GR, otherwise, it is som
thing else. At a certain point with coordinatesx it is indeed
true that bothgab anddgab can be chosen to be anything w
want. However, it is not clear that the same conclusion
true for all the points in a neighborhood ofx due to the
restrictions that we have imposed to the form of some of
components of the tetrads~in fact the main result of the
paper shows thatgab anddgab are notcompletely arbitrary
in all the points ofS!.

n
5Because the gradient of a scalar function does not transform

the zero component of a SO~4! vector @9#.
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IV. HAMILTONIAN FORMULATION
FOR THE NEW ACTION

By introducing a foliation as in Sec. II we can write

Ŝ5E dtE
S
d3xH Ȧa

i h̃ abc@e i jkeb
j ec

k2ebi¹cf#

1A0
i ¹a@h̃ abc~e i jkeb

j ec
k2ebi¹cf!#1

1

2
ḟh̃ abcea

i Fbci

1e0
i h̃abcFe i jkea

j Fbc
k 2

1

2
Fabi¹cfG J [E dtL~ t !.

We denotep̃ i
a(x), p̃ i(x), s̃ i

a(x), s̃ i(x), and p̃(x) the mo-
menta canonically conjugate toAa

i (x), A0
i (x), ea

i (x), e0
i (x),

and f(x) ~with Poisson brackets given symbolically b
$q,p%51!. We find the following primary constraints:

p̃ i
a1h̃ abc@ebi¹cf2e i jkeb

j ec
k#50, ~9!

p̃ i50, ~10!

s̃ i
a50, ~11!

s̃ i50, ~12!

2p̃2h̃ abcea
i Fbci50. ~13!

The Hamiltonian and the total Hamiltonian are

H5E
S
d3xH e0

i h̃ abcF1

2
Fabi¹cf2e i jkea

j Fbc
k G

1A0
i ¹a@h̃ abc~ebi¹cf2e i jkeb

j ec
k!#J , ~14!

HT5H1E
S
d3x$la

i @p̃ i
a1h̃ abc~ebi¹cf2e i jkeb

j ec
k!#

1l ip̃ i1ma
i s̃ i

a1m i s̃ i1z@2p̃2h̃ abcea
i Fbci#%,

~15!

wherela
i (x), l i(x), ma

i (x), m i(x), andz(x) are arbitrary~at
this stage! Lagrange multipliers. The conservation under t
evolution defined byHT of the primary constraints~9!–~13!
gives the secondary constraints

¹a@h̃ abc~eb
i ¹cf2e i jkeb jeck!#50, ~16!

h̃ abcFe i jkea
j Fbc

k 2
1

2
Fabi¹cfG50, ~17!

and the following conditions on the Lagrange multipliers:

h̃ abcF S 1

2
d ik¹bf1e i jkeb

j D ~mc
k2¹ce0

k2eklmeclA0m!

2z¹beci2e i jke0
j ¹bec

kG50, ~18!
h̃ abcF S 1

2
d ik¹bf2e i jkeb

j D ~lc
k2¹cA0

k!

2
1

2
zFbci1

1

2
e i jke0

j Fbc
k G50, ~19!

h̃ abc@~ma
i 2¹ae0

i 2e i jkea jA0k!Fbci

12~la
i 2¹aA0

i !¹beci#50. ~20!

The conservation in time of Eqs.~16! and ~17! does not
generate new secondary constraints but only the follow
conditions on the Lagrange multipliers:

h̃ abcH ¹aF S 1

2
d ik¹bf1e i jkeb

j Dmc
kG2~¹az!~¹beci!

2S 1

2
d ik¹af1e i jkea

j D ek
lmlb

l ec
mJ 50, ~21!

h̃ abcH S 1

2
d ik¹af2e i jkea

j D¹blc
k2

1

2
e i jkma

j Fbc
k

1
1

2
Fab

i ¹czJ 50. ~22!

In principle, one expects that some combination of the s
ond class constraints will be first class. The way to find ou
this is the case is to solve the equations for the Lagra
multipliers. As we show in the Appendix it is possible to fin
ma

i from Eq. ~18! and la
i from Eq. ~19! and write them in

terms ofz, ea
i , e0

i , Aa
i , andA0

i :

ma
i 5¹ae0

i 1e i jkea jA0k1P> a
i
b

j h̃ bcd~z¹ced
j 1e jkle0

k¹ced
l !,

~23!

la
i 5¹aA0

i 2
1

2
P> b

j
a

i h̃ bcd~zFcd j2e jkle0
kFcd

l !, ~24!

whereP> a
i
b

j ~which is calculated in the Appendix! satisfies
P̃a

i
b

j P> b
j
c
k5dc

adk
i . We have made the ansatz that the triad

nondegenerate~and we will continue to do so throughout th
paper!. After some tedious algebra it is possible to verify th
Eqs. ~20!–~22! are identically satisfied by the previousma

i

andla
i . We leave~some of! the details for the Appendix.

We want to stress here the importance of paying atten
to the conditions on the Lagrange multipliers that appea
the Hamiltonian analysis. If one knows beforehand wha
theory means, one can usually skip the arduous solution
the consistency equations as one does not need to know
explicit form of the Lagrange multipliers once all the fir
class constraints have been identified. However, it is true
general, that the Lagrange multiplier equations themse
may imply additional constraints~they are nonhomogeneou
linear equations! so, if one does not know the meaning of th
theory one is dealing with, great attention must be paid
these equations in order to avoid missing some of the c
straints and completely fail in the interpretation of th
theory.

Substituting Eqs.~23!, ~24! in HT we get
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HT5E
M

d3xH e0
i F h̃ abcS 1

2
Fabi¹cf2e i jkea

j Fbc
k D2¹as̃ i

a2e i jk s̃ l
aP> a

l
b

j h̃ bcd¹ced
k

2
1

2
@p̃ j

a1h̃ abc~eb j¹cf2e jkleb
kec

l !#P> d
m

a
j h̃ de fe imnFe f

n G
2A0

i ~¹ap̃ i
a1e i jkea

j s̃ ak!1l ip̃
i1m i s̃

i

1zF2p̃2h̃ abcea
i Fbci1s̃ i

aP> a
i
b

j h̃ bcd¹ced j

2
1

2
P> b

j
a

i h̃ bcdFcd j@p̃ i
a1h̃ ae f~eei¹ ff2e iklee

kef
l !#G J . ~25!
n
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The terms proportional toe0
i and A0

i together give a first
class Hamiltonian and the terms proportional toz, l i , and
m i are first class constraints~each of them!. Of course, we
have also all the remaining constraints provided by Eqs.~9!,
~10!, ~16!, ~17!. The first class constraintsp̃ i50 and s̃ i

50 imply thatA0
i ande0

i are arbitrary functions so we ca
just removep̃ i50 and s̃ i50 from Eq. ~25!. Furthermore,
as nowA0

i , e0
i , andz are arbitrary andHT is first class, the

expressions that they multiply~linear combinations of first
and second class constraints! must be first class constraint
In this way we get three sets of first class constraints plus
following independent second class constraints:

p̃ i
a1h̃ abc@ebi¹cf2e i jkeb

j ec
k#50, ~26!

s̃ i
a50. ~27!

These are very easy to deal with. In practice it is enough
removes̃ i

a from the first class constraints and writeea
i in

terms off and p̃ i
a by solving Eq.~26!:

ea
i 5

1

4p5
h> abc$6@2p5 2~p̃ l

d¹df!2#1/2e i jkp̃ j
bp̃ k

c

22~p̃ k
d¹df!p̃ bkp̃ ci%,

wherep5 [detp̃ i
a . The final Hamiltonian description is ver

simple. The phase space is coordinated by the canonic
conjugate pairs6 (Aa

i ,p̃ i
a) and (f,p̃) and the first class con

straints are

¹ap̃ i
a50,

p̃ i
bFab

i 1 p̃¹af50,

p̃7
1

2
@2p5 2~p̃ l

d¹df!2#21/2e i jkp̃ i
ap̃ j

bFabk50. ~28!

They are the Gauss law, which generates SO~3! gauge trans-
formations, the vector constraint that~essentially! generates

6This is the symplectic structure given by the Dirac brackets.
e

to

lly

diffeomorphisms, and a scalar constraint linear inp̃. They
are first class constraints. It is convenient to write them
‘‘weighted’’ form

G~Ni !5E
S
d3xNi¹ap̃ i

a ,

V~Na!5E
S
d3xNa~p̃ i

bFab
i 1 p̃ ¹af!,

S~N!5E
S
d3xNH p̃7

1

2
@2p5 2~p̃ l

d¹df!2#21/2

3e i jkp̃ i
ap̃ j

bFabkJ . ~29!

The three-dimensional diffeomorphisms are generated by
combination of the Gauss law and the vector constra
D(Na)[G(NaAa

i )2V(Na). We can write now the con-
straint algebra

$G~Ni !,G~Mi !%5G~@N,M # i !, with @N,M # i[e i jkNjMk ,

$G~Ni !,V~Ma!%50,

$G~Ni !,S~M !%50,

$D~Na!,D~Mb!%5D~2@N,M #a!,

with @N,M #a[Nb]bMa2Mb]bNa,

$D~Na!,S~M !%5S~2Na¹aM !,

$S~N!,S~M !%5VF ~N]aM2M]aN!
4p̃ a

i p̃ bi

2p5 2~p̃ l
d¹df!2G .

~30!

Several remarks are now in order. First, we see that the c
straints are first class. As we have 20 canonical variables
space point inS and seven first class constraints we ha
three degrees of freedom per space point—one more th
GR. Second, the Poisson bracket of the scalar constraint
itself closes and gives the vector constraint. This is in agr
ment with what one would expect from the arguments giv
by Hojman, Kucharˇ, and Teitelboim in Ref.@10# where they
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showed that the algebra of space-time deformations imp
a constraint algebra of the type given by Eq.~30!. Third, the
structure of the scalar constraint is quite suggestive; it
two terms, one linear inp̃ and another proportional to th
scalar constraint in the Euclidean Ashtekar formulation
GR. This may signal a previously unnoticed relation betwe
the Husain-Kucharˇ model and GR.

From Eqs.~28!, ~29! we can interpret the model ver
easily. It is enough to impose the gauge fixing conditi
f50 @admissible because$f(x),p̃(y)%5d3(x,y)# to get rid
of the scalar constraint and thef-dependent part of the vec
tor constraint to recover the constraints of the usual
model, namely,

¹ap̃ i
a50,

p̃ i
aFab

i 50. ~31!

This means that in our formulation of the model the gau
orbits have one extra dimension so, in rigor, the models
equivalent only modulo gauge transformations. At this po
the reader may have the temptation to think that, after al
is trivial to add a scalar constraint to Eq.~31! in order to
have a time variable~just takep̃50 and add the term nec
essary to generate diffeomorphisms onf and p̃ to the vector
constraint!. The formulation thus obtained is, obviousl
equivalent to ours@and can be derived from the action~6! by
removing the derivatives off with an integration by parts#.
However, it is much less obvious~and less trivial! the fact
that with a suitable choice of a scalar constraint one gets,
only a time variable, but also a way to interpret the H
model as a theory for nondegenerate four-metrics at the
grangian level.

V. THE FOUR-DIMENSIONAL PICTURE:
NONDEGENERATE FOUR-METRICS

The four-dimensional field equations coming from the a
tion ~6! are

h̃ abcd$Fabi¹cf22e i jkea
j Fbc

k %50, ~32!

h̃ abcd$¹aebi¹cf12e i jkea
j ¹bec

k%50, ~33!

h̃ abcd~¹aeb
i !Fcdi50. ~34!

If we have a solution to these equations we can build
four-metric from the tetrad given by (¹af,ea

i ) as
gab56¹af¹bf1ea

i ebi . Notice that it is possible to write
both Euclidean and Lorentzian four-metrics by choosing
sign in front of the¹af¹bf term. In general one expect
thatgab is nondegenerate as can be checked by simply sh
ing some solutions to Eqs.~32!–~34! such as

Aa
i 50, f5x0, ea

i 5F 0 0 0

1 0 0

0 1 0

0 0 1

G . ~35!

As can be seen, Eq.~35! provides both the Euclidean and th
Minkowski metric inR4. We see that we can solve the~ap-
d

s

r
n

e
re
t
it

ot

a-

-

a

e

w-

parent! paradox presented in the introduction by using t
scalar field that is present now in the field equations to bu
nondegenerate four-metrics.

It is interesting at this point to compare the new equatio
~32!–~34! with the old ones~2!. For starters we seem to hav
one more equation now than we had before; however, as
show below, this equation is not independent of the oth
and, also, any solution to Eq.~2! is a solution to it. In the
following we use a procedure similar to the one that appe
in Sec. III of Ref.@2#. Let us write

Eab
i [¹ [aeb]

i ,

ñ a[
1

3!
h̃ abcde i jkeb

i ec
j ed

k ,

h̃ i
a[2

1

2
h̃ abcde i jkeb

j ec
k¹df.

Now ñ añ bEab
i 50 implies that there must existẼj

i such that

ñ aEab
i 5eb

j Ẽj
i .

Notice thatea
i satisfy ñ aẼa

i 50 so that any linear combina
tion of theea

i such asea
j Ẽj

i will also satisfyñ aẼj
iea

j 50. By
the same reasoning there must existF̃ j

i such that

ñ aFab
i 5eb

j F̃ j
i .

We define also~we supposeñ d¹dfÞ0!

ekl[
1

~ ñ d¹df!2 e i jk h̃ i
ah̃ j

bEab
l ,

f kl[
1

~ ñ d¹df!2 e i jk h̃ i
ah̃ j

bFab
l .

We can extract all the content from Eqs.~32!–~34! by mul-
tiplying the first two by

e i jk h̃ i
ah̃ j

bh̃ k
c , e i jk ñ [ah̃ j

bh̃ k
c] ,

and the scalar equation~34! by

e i jk ñ [ah̃ i
bh̃ j

ch̃ k
d]

~which is proportional toh̃ abcd!.
The result that we obtain from Eq.~32! is that

Fi j 52 1
2 ( f i j 2 1

2 d i j f ) and f i j is symmetric and from
Eq. ~33! thatEi j 5 1

2 (ei j 2 1
2 d i j e) andei j is symmetric, where

e and f are the traces ofei j and f i j , respectively. In terms of
ei j , f i j , Ei j , and Fi j the scalar equation~34! gives ei j Fi j
1 f i j Ei j 50; we see now that all the solutions to Eqs.~32!
and~33! are solutions to the scalar equation and, hence,
redundant.

If we consider now the standard HK equations we see
there is no scalar equation there. It is possible to extract
content of Eq.~2! by using the procedure introduced abov
The only difference now is that we need an auxiliary sca
function~for example, the one that gives the foliation used
the passage to the Hamiltonian formulation! to defineh̃ i

a .
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We immediately find the result that appears in Ref.@2#
e@ i j #50, f @ i j #50, Ei j 50, andFi j 50, so that now it is also
true that the scalar equation~34! is satisfied. In order to
compare the solutions to Eqs.~2! and ~32!–~34! one must
take into account the new symmetry present in the model
to the introduction off.

VI. FROM THE OLD TO THE NEW HUSAIN-KUCHAR ˇ

MODEL: EQUIVALENCE AT THE LAGRANGIAN
LEVEL

Although we have seen from the Hamiltonian analy
that the new and all formulations of the HK model a
strictly equivalent it is instructive to understand this from
independent point of view because the actions~1! and ~6!
look quite different@in fact one could claim that Eq.~6! is
really ‘‘closer’’ to the self-dual action for GR than to the H
action#.

The key idea to show this equivalence is the last resul
the previous section, i.e., the fact that every solution to
ordinary HK equations~2! also satisfies Eq.~34!. This means
that nothing changes if we add this condition to the action~1!
with a scalar Lagrange multiplierf. In this way we get

Ŝ15E
M

d4xh̃ abcd@2fFab
i ¹cedi1e i jkea

i eb
j Fcd

k #,

which is obviously equivalent to Eq.~6!. Actually we can go
even further. From the HK equations it is straightforward
show that Eq.~2! implies

h̃ abcd¹a~e i jkeb
i ec

j ed
k!50

so that even the action7

Ŝ25E
M

d4xh̃ abcd@fFab
I ¹cedi1e i jkea

i eb
j Fcd

k

1ce i jk¹a~eb
i ec

j ed
k!#

describes the HK model. This last action admits an inter
ing interpretation. If we choosec(x)52(L/3!)f(x) with L
a real constant and consider the tetradea

I [(¹af,ea
i ) whose

inverse is given by

eI
a[

1

det ea
I F ñ a

h̃ i
aG

with ña andh̃a as defined in the previous section we see t
the added term is, in fact,

E
M

d4xL~det ea
I !,

that is, a cosmological constant term. This is the simp
~and trivial! instance of a matter coupling to the HK mod
using the, now available, nondegenerate four-metric.

An additional curious fact is that the previous term
equivalent to

7There are even more possibilities which we do not discuss h
e

s

f
e

t-

t

st

E
M

d4xL~det ea
I !eJ

aeaJ¹af¹bf,

i.e., the coupling of thef field to the ‘‘nondegenerate HK
model’’ as a free scalar. A Hamiltonian analysis of these l
actions with a ‘‘cosmological constant’’ following the line
of Sec. IV shows their equivalence with the usual HK mod

VII. CONCLUSIONS AND PERSPECTIVES

As we have shown in the paper it is possible to descr
the Husain-Kucharˇ model with an action principle for non
degenerate metrics. We have accomplished this by introd
ing a scalar field in such a way that adds no new degree
freedom. This scalar plays, in a sense, the role of a t
variable not only because we have now a Hamiltonian c
straint that is linear in its canonical momentum but also
cause it allows dynamics to be referred to it. Our propo
should be compared to those of other authors~especially
Refs.@6# and@7#!. In these papers a scalar field is included
a means to define quantum gauge invariant observab
quoting Rovelli ‘‘matter observables which can be used
dynamically determine surfaces, the areas of which, we
measure.’’ Our contribution in this respect is that we ha
managed to achieve this goal without introducing new
grees of freedom in the model. We find it quite appeali
that in this process we get a nice interpretation of the sc
f as time. Not only can we do this but also, as a side res
we have now the possibility of coupling ordinary matter
the model. This provides a type of theories that lie in b
tween those that have a matter evolving in a nondynam
background and full GR. We think that a lot can be learn
from looking at these theories; we plan to study them in
future. Notice, by the way, that we have the choice of co
pling the matter fields to Euclidean or Lorentzian metric
depending on the choice of the sign in the first term of
four-metricgab56¹af¹bf1ea

i ebi .
We want to remark at this point that not knowing befor

hand what the meaning of the action~6! is, one should be
very careful in order to avoid missing constraints crucial
the interpretation of the theory. That is why we have paid
much attention to the solution of the equations for t
Lagrange multipliers. Also, we emphasize again the con
diction in claiming that the Husain-Kucharˇ model only al-
lows for the existence of degenerate four-metrics wherea
is obviously an extension of both Euclidean and Lorentz
GR. We believe that we have clearly solved this seemin
paradoxical fact in the paper.

ACKNOWLEDGMENTS

The authors want to thank our colleagues G. Immirzi,
Julve, J. Leon, and G. Mena for their useful comments
this paper. J.F.B.G. also wants to thank J. M. Martı´n Garcı´a
for a very enlightening discussion. J.F.B.G. and R.T. w
supported by CSIC contracts.

APPENDIX

As we have said in the main text of the paper we ha
paid special attention to the solution of the Lagrange mue.
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plier equations~18!–~22!. The strategy that we have fo
lowed is simple. First solve Eq.~18! for ma

i and Eq.~19! for
la

i and plug the result into the remaining ones. The res
that we have obtained~for nondegenerate triads! shows that
once we write these Lagrange multipliers in terms ofz, A0i ,
e0i , Aai , eai , andf the remaining equations are identical
satisfied.

In order to solve Eqs.~18! and ~19! we need to compute
the inverses~that we denoteP> a

i
b

j ! of the 939 matrices

P̃a
i
c
k~x![h̃ abcS 1

2
d ik¹bf1e i jkeb

j D
and its transpose

P̃c
k
a

i~x![h̃ abcS 2
1

2
d ik¹bf1e i jkeb

j D ,

where a
i are ‘‘double indices’’ that take the nine differen

values that make these matrices 939. The best way to build
their inverses is to explicitly solve the equation

M̃a
i
b

jXb
j [h̃ abc~d i j vc1e i jkec

k!Xb
j 5 J̃ i

a . ~A1!

First we introduce the inverse triadei
a such thatei

aea
j 5d i

j

and writeh̃ abc5ẽe i jkei
aej

bek
c ~hereẽ is the nonzero determi

nant of the triad!. Introducing this in Eq.~A1!, expanding,
and using the notation

Xi j [ei
aXa j , X[ei

aXa
i , Ji

a[ J̃i
a/ẽ, Ji j [eaiJj

a ,

J[eaiJ
ai

we get

e lmnel
aXmivn1e lmke i jkel

aXm
j 5Ji

a

which, after multiplying byeal transforms into an equatio
that only involves objects with internal indices:

e l
mnXmivn1Xd i l 2Xil 5 j l i . ~A2!

Let us now take the trace of Eq.~A2! and multiply it by
e i lpvp and byv iv l . We find the following three equations:

2e i jkXi j vk12X5J, ~A3!

Xi j v
iv j2v2X2e i jkXi j vk52e i jkJi j vk , ~A4!

Xv22Xi j v
iv j5Ji j v

iv j , ~A5!

wherev2[v iv
i . Adding Eqs.~A4! and ~A5! and using Eq.

~A3! gives

X5
1

2
@J1e i jkJi j vk2v iv j Ji j #.
lt

This means that we know how to expressX in Eq. ~A2! in
terms ofJi j andv i . If we look now at how the indices in the
remainingXi j appear we see that thei index is at both the
second and the first place. If we could find the way to ha
both i indices at the second place the remaining equa
would be very easy to solve by inverting a simple 333 ma-
trix. To this end we need to know the expression forX@ i j # in
terms ofJi j . This can be computed by multiplying Eq.~A1!
both byva ande i lmea

m and eliminating tangent space indice
as before. One gets

X@ i j #5J@ i j #2
1

2
e i jkJlkv l .

Using this result in Eq.~A2! we have

Xk
i~d jk2e jklv

l !5
1

2
d i j ~J1e pqrJpqv r2vpvqJpq!

1e i jkJlkv l2Ji j . ~A6!

Multiplying Eq. ~A6! by

1

11v2 @dn j1vnv j1en jsv
s#

and reintroducing the triads we finally get

M> a
i
b

j5
1

2ẽ~11v2!
@dnl1vnv l1enlrv

r #

3@d i l d k
j 22d k

i d j l 1d i l e j
mkv

m

12e i l j vk2vkv
jd i l #ea

neb
k . ~A7!

The inverses ofP̃i
a

j
b and its transpose are immediately o

tained from Eq.~A7!. With them it is possible to check by
direct substitution that the consistency equations~20!–~22!
are identically satisfied. In practice the best strategy to
this is the following. First, eliminate the tangent space in
ces by multiplying by suitable combinations of inverse t
ads, then use the constraints~16! and ~17! in the form

F2
1

2
d ik¹af1e i jkea

j G h̃ abc¹beci50,

F1
1

2
d ik¹af1e i jkea

j G h̃ abcFbci50.

In order to check Eq.~21! it is very useful to use the follow-
ing identity:

h̃ abc~Pai
k eklm2 P̂akle

k
mi!ec

mLb
l 50,

where

Paik[vad ik2e i jkea
j ,

P̂aik[vad ik1e i jkea
j ,

andLb
l is arbitrary.
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