1,252 research outputs found
Illusions of general relativity in Brans-Dicke gravity
Contrary to common belief, the standard tenet of Brans-Dicke theory reducing
to general relativity when omega tends to infinity is false if the trace of the
matter energy-momentum tensor vanishes. The issue is clarified in a new
approach using conformal transformations. The otherwise unaccountable limiting
behavior of Brans-Dicke gravity is easily understood in terms of the conformal
invariance of the theory when the sources of gravity have radiation-like
properties. The rigorous computation of the asymptotic behavior of the
Brans-Dicke scalar field is straightforward in this new approach.Comment: 16 pages, LaTeX, to appear in Physical Review
Exact analytical solutions to the master equation of quantum Brownian motion for a general environment
We revisit the model of a quantum Brownian oscillator linearly coupled to an
environment of quantum oscillators at finite temperature. By introducing a
compact and particularly well-suited formulation, we give a rather quick and
direct derivation of the master equation and its solutions for general spectral
functions and arbitrary temperatures. The flexibility of our approach allows
for an immediate generalization to cases with an external force and with an
arbitrary number of Brownian oscillators. More importantly, we point out an
important mathematical subtlety concerning boundary-value problems for
integro-differential equations which led to incorrect master equation
coefficients and impacts on the description of nonlocal dissipation effects in
all earlier derivations. Furthermore, we provide explicit, exact analytical
results for the master equation coefficients and its solutions in a wide
variety of cases, including ohmic, sub-ohmic and supra-ohmic environments with
a finite cut-off.Comment: 37 pages (26 + appendices), 14 figures; this paper is an evolution of
arXiv:0705.2766v1, but contains far more general and significant results; v2
minor changes, double column, improved Appendix
On Higher Order Gravities, Their Analogy to GR, and Dimensional Dependent Version of Duff's Trace Anomaly Relation
An almost brief, though lengthy, review introduction about the long history
of higher order gravities and their applications, as employed in the
literature, is provided. We review the analogous procedure between higher order
gravities and GR, as described in our previous works, in order to highlight its
important achievements. Amongst which are presentation of an easy
classification of higher order Lagrangians and its employment as a
\emph{criteria} in order to distinguish correct metric theories of gravity. For
example, it does not permit the inclusion of only one of the second order
Lagrangians in \emph{isolation}. But, it does allow the inclusion of the
cosmological term. We also discuss on the compatibility of our procedure and
the Mach idea. We derive a dimensional dependent version of Duff's trace
anomaly relation, which in \emph{four}-dimension is the same as the usual Duff
relation. The Lanczos Lagrangian satisfies this new constraint in \emph{any}
dimension. The square of the Weyl tensor identically satisfies it independent
of dimension, however, this Lagrangian satisfies the previous relation only in
three and four dimensions.Comment: 30 pages, added reference
Quantitative Treatment of Decoherence
We outline different approaches to define and quantify decoherence. We argue
that a measure based on a properly defined norm of deviation of the density
matrix is appropriate for quantifying decoherence in quantum registers. For a
semiconductor double quantum dot qubit, evaluation of this measure is reviewed.
For a general class of decoherence processes, including those occurring in
semiconductor qubits, we argue that this measure is additive: It scales
linearly with the number of qubits.Comment: Revised version, 26 pages, in LaTeX, 3 EPS figure
Harmonisation of short-term in vitro culture for the expansion of antigen-specific CD8(+) T cells with detection by ELISPOT and HLA-multimer staining.
Ex vivo ELISPOT and multimer staining are well-established tests for the assessment of antigen-specific T cells. Many laboratories are now using a period of in vitro stimulation (IVS) to enhance detection. Here, we report the findings of a multi-centre panel organised by the Association for Cancer Immunotherapy Immunoguiding Program to investigate the impact of IVS protocols on the detection of antigen-specific T cells of varying ex vivo frequency. Five centres performed ELISPOT and multimer staining on centrally prepared PBMCs from 3 donors, both ex vivo and following IVS. A harmonised IVS protocol was designed based on the best-performing protocol(s), which was then evaluated in a second phase on 2 donors by 6 centres. All centres were able to reliably detect antigen-specific T cells of high/intermediate frequency both ex vivo (Phase I) and post-IVS (Phase I and II). The highest frequencies of antigen-specific T cells ex vivo were mirrored in the frequencies following IVS and in the detection rates. However, antigen-specific T cells of a low/undetectable frequency ex vivo were not reproducibly detected post-IVS. Harmonisation of the IVS protocol reduced the inter-laboratory variation observed for ELISPOT and multimer analyses by approximately 20 %. We further demonstrate that results from ELISPOT and multimer staining correlated after (P < 0.0001 and R (2) = 0.5113), but not before IVS. In summary, IVS was shown to be a reproducible method that benefitted from method harmonisation
Search for Heavy Neutral and Charged Leptons in e+ e- Annihilation at LEP
A search for exotic unstable neutral and charged heavy leptons as well as for
stable charged heavy leptons is performed with the L3 detector at LEP.
Sequential, vector and mirror natures of heavy leptons are considered. No
evidence for their existence is found and lower limits on their masses are set
Search for an invisibly decaying Higgs boson in e^+e^- collisions at \sqrt{s} = 183 - 189 GeV
A search for a Higgs boson decaying into invisible particles is performed
using the data collected at LEP by the L3 experiment at centre-of-mass energies
of 183 GeV and 189 GeV. The integrated luminosities are respectively 55.3 pb^-1
and 176.4 pb^-1. The observed candidates are consistent with the expectations
from Standard Model processes. In the hypothesis that the production cross
section of this Higgs boson equals the Standard Model one and the branching
ratio into invisible particles is 100%, a lower mass limit of 89.2 GeV is set
at 95% confidence level
Search for Extra Dimensions in Boson and Fermion Pair Production in e+e- Interactions at LEP
Extra spatial dimensions are proposed by recent theories that postulate the
scale of gravity to be of the same order as the electroweak scale. A sizeable
interaction between gravitons and Standard Model particles is then predicted.
Effects of these new interactions in boson and fermion pair production are
searched for in the data sample collected at centre-of-mass energies above the
Z pole by the L3 detector at LEP. In addition, the direct production of a
graviton associated with a Z boson is investigated. No statistically
significant hints for the existence of these effects are found and lower limits
in excess of 1 TeV are derived on the scale of this new theory of gravity
Measurement of Hadron and Lepton-Pair Production at 130GeV < \sqrt{s} < 189 GeV at LEP
We report on measurements of e+e- annihilation into hadrons and lepton pairs.
The data have been collected with the L3 detector at LEP at centre-of-mass
energies between 130 and 189 GeV. Using a total integrated luminosity of 243.7
pb^-1, 25864 hadronic and 8573 lepton-pair events are selected for the
measurement of cross sections and leptonic forward-backward asymmetries. The
results are in good agreement with Standard Model predictions
Search for Manifestations of New Physics in Fermion-Pair Production at LEP
The measurements of hadron and lepton-pair production cross sections and
leptonic forward-backward asymmetries performed with the L3 detector at
centre-of-mass energies between 130 GeV and 189 GeV are used to search for new
physics phenomena such as: contact interactions, exchange of virtual
leptoquarks, scalar quarks and scalar neutrinos, effects of TeV strings in
models of quantum gravity with large extra dimensions and non-zero sizes of the
fermions. No evidence for these phenomena is found and new limits on their
parameters are set
- …
