106 research outputs found
Introduction:The Longitudinal Ethnography of Violence
While many anthropologists have previously reflected on longitudinal ethnography â for example distinguishing between different categories of longitudinal research, including the ethnographic revisit, either by the same or another researcher, diachronic research projects, involving continuous and sustained engagement over time, or so-called large-scale or multigenerational projects, among others â there has been little reflection on the way particular topics of research might impact on the longitudinal research process. In particular, we argue here that the stakes of longitudinal ethnographic research come to the fore particularly starkly in relation to studies of violence. More specifically, longitudinality potentially both enhances certain risks inherent to carrying out research on violence, while also offering unique opportunities for better understanding the phenomenon more reflexively.ASC â Publicaties niet-programma gebonde
A Binary Lensing Event Toward the LMC: Observations and Dark Matter Implications
The MACHO collaboration has recently analyzed 2.1 years of photometric data
for about 8.5 million stars in the Large Magellanic Cloud (LMC). This analysis
has revealed 8 candidate microlensing events and a total microlensing optical
depth of . This significantly
exceeds the number of events (1.1) and the microlensing optical depth predicted
from known stellar populations: , but it is
consistent with models in which about half of the standard dark halo mass is
composed of Machos of mass \sim 0.5 \msun. One of these 8 events appears to
be a binary lensing event with a caustic crossing that is partially resolved
which allows us to estimate the distance to the lenses. If the source star is
not a short period binary star, then we show that the lens system is very
likely to reside in the LMC. However, if we assume that the optical depth for
LMC-LMC lensing is large enough to account for our entire lensing signal, then
the binary event does not appear to be consistent with lensing of a single LMC
source star by a binary residing in the LMC. Thus, while the binary lens may
indeed reside in the LMC, there is no indication that most of the lenses reside
in the LMC.Comment: 5 pages, 3 postscript figures included; To appear in the Proceedings
of the Dark Matter '96 Conference held in Santa Monica, CA, Feb., 199
The MACHO Project 2nd Year LMC Microlensing Results and Dark Matter Implications
The MACHO Project is searching for galactic dark matter in the form of
massive compact halo objects (Machos). Millions of stars in the Large
Magellanic Cloud (LMC), Small Magellanic Cloud (SMC), and Galactic bulge are
photometrically monitored in an attempt to detect rare gravitational
microlensing events caused by otherwise invisible Machos. Analysis of two years
of photometry on 8.5 million stars in the LMC reveals 8 candidate microlensing
events, far more than the event expected from lensing by low-mass stars
in known galactic populations. From these eight events we estimate the optical
depth towards the LMC from events with 2 < \that < 200 days to be
\tau_2^{200} \approx 2.9 ^{+1.4}_{-0.9} \ten{-7}. This exceeds the optical
depth of 0.5\ten{-7} expected from known stars and is to be compared with an
optical depth of 4.7\ten{-7} predicted for a ``standard'' halo composed
entirely of Machos. The total mass in this lensing population is \approx
2^{+1.2}_{-0.7} \ten{11} \msun (within 50 kpc from the Galactic center). Event
timescales yield a most probable Macho mass of 0.5^{+0.3}_{-0.2}\msun,
although this value is quite model dependent.Comment: 10 pages, 6 epsf figures and style file included, 451k, also at
http://wwwmacho.mcmaster.ca/Pubs/Pubs.html; To appear in the Proceedings of
"Sources and Detection of Dark Matter in the Universe", Santa Monica, CA,
Feb., 199
The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets
This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sunâs centre, equal to half of Mercuryâs perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics
The composition of the protosolar disk and the formation conditions for comets
Conditions in the protosolar nebula have left their mark in the composition
of cometary volatiles, thought to be some of the most pristine material in the
solar system. Cometary compositions represent the end point of processing that
began in the parent molecular cloud core and continued through the collapse of
that core to form the protosun and the solar nebula, and finally during the
evolution of the solar nebula itself as the cometary bodies were accreting.
Disentangling the effects of the various epochs on the final composition of a
comet is complicated. But comets are not the only source of information about
the solar nebula. Protostellar disks around young stars similar to the protosun
provide a way of investigating the evolution of disks similar to the solar
nebula while they are in the process of evolving to form their own solar
systems. In this way we can learn about the physical and chemical conditions
under which comets formed, and about the types of dynamical processing that
shaped the solar system we see today.
This paper summarizes some recent contributions to our understanding of both
cometary volatiles and the composition, structure and evolution of protostellar
disks.Comment: To appear in Space Science Reviews. The final publication is
available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-
Longitudinal lung function assessment of patients hospitalised with COVID-19 using 1H and 129Xe lung MRI
BACKGROUND: Microvascular abnormalities and impaired gas transfer have been observed in patients with COVID-19. The progression of pulmonary changes in these patients remains unclear. RESEARCH QUESTION: Do patients hospitalised due to COVID-19 without evidence of architectural distortion on structural imaging show longitudinal improvements in lung function measured using 1H and 129Xe magnetic resonance imaging between 6-52 weeks after hospitalisation? STUDY DESIGN AND METHODS: Patients who were hospitalised due to COVID-19 pneumonia underwent a pulmonary 1H and 129Xe MRI protocol at 6, 12, 25 and 51 weeks after hospital admission in a prospective cohort study between 11/2020 and 02/2022. Imaging protocol: 1H ultra-short echo time, contrast enhanced lung perfusion, 129Xe ventilation, 129Xe diffusion weighted and 129Xe spectroscopic imaging of gas exchange. RESULTS: 9 patients were recruited (57±14 [median±interquartile range] years, 6/9 male). Patients underwent MRI at 6 (N=9), 12 (N=9), 25 (N=6) and 51 (N=8) weeks after hospital admission. Patients with signs of interstitial lung damage were excluded. At 6 weeks, patients demonstrated impaired 129Xe gas transfer (red blood cell to membrane fraction) but lung microstructure was not increased (apparent diffusion coefficient and mean acinar airway dimensions). Minor ventilation abnormalities present in four patients were largely resolved in the 6-25 week period. At 12 weeks, all patients with lung perfusion data (N=6) showed an increase in both pulmonary blood volume and flow when compared to 6 weeks, though this was not statistically significant. At 12 weeks, significant improvements in 129Xe gas transfer were observed compared to 6-week examinations, however 129Xe gas transfer remained abnormally low at weeks 12, 25 and 51. INTERPRETATION: 129Xe gas transfer was impaired up to one year after hospitalisation in patients who were hospitalised due to COVID-19 pneumonia, without evidence of architectural distortion on structural imaging, whereas lung ventilation wa normal at 52 weeks
The Physics of Star Cluster Formation and Evolution
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe
- âŠ