117 research outputs found

    The relationship between mantle potential temperature and oceanic lithosphere buoyancy

    Get PDF
    The Earth's mantle potential temperature (Tp) is thought to have cooled by ~250 °C since the Archean, causing a progressive change in both the structure and composition of oceanic lithosphere. These variables affect the negative buoyancy of subducting slabs, which is known to be an important force in driving plate motions. However, the relationship between Tp and slab buoyancy remains unclear. Here, we model the formation and subduction of oceanic lithosphere as a function of Tp, to investigate how Tp influences the buoyancy of subducting slabs, and by extension how buoyancy forces may have changed through time. First, we simulate isentropic melting of peridotite at mid-ocean ridges over a range of Tp (1300-1550 °C) to calculate oceanic lithosphere structure and composition. Second, we model the thermal evolution of oceanic plates undergoing subduction for a variety of scenarios (by varying lithospheric thickness, slab length and subduction velocity). Finally, we integrate the structural, compositional and thermal constraints to forward model subduction metamorphism of oceanic plates to determine down-going slab density structures. When compared with ambient mantle, these models allow us to calculate buoyancy forces acting on subducting slabs. Our results indicate that oceanic lithosphere derived from hotter mantle has a greater negative buoyancy, and therefore subduction potential, than lithosphere derived from cooler mantle for a wide range of subduction scenarios. With respect to the early Earth, this conclusion supports the viability of subduction, and models of subduction zone initiation that invoke the concept of oceanic lithosphere being primed to subduct. However, we also show that decreases to lithosphere thickness and slab length, and reduced crustal hydration, progressively reduce slab negative buoyancy. These results highlight the need for robust estimates of early Earth lithospheric properties when considering whether subduction was operative at this time. Nevertheless, our findings suggest that subduction processes on the early Earth may have been uniformitarian

    Magmatic, Metamorphic and Structural History of the Variscan Lizard Ophiolite and Metamorphic Sole, Cornwall, UK

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The field data, electron-microprobe analysis data, the CA-ID-TIMS and laser ablation U-Pb data and XRF data used for structural analysis, geochronology, geochemistry and thermobarometry in the study are currently being archived at Oxford Research Archive for Data (ORA-Data). It can be accessed here: https://doi.org/10.5287/bodleian:0zwDDM7QmThe Lizard ophiolite, Cornwall, South-West England, is the largest and best-preserved ophiolite within the Variscan orogenic belt. It forms part of the Rheic-Rhenohercynian suture zone, and was obducted northwestward onto the passive continental margin of Avalonia (Laurussia) during the Middle Devonian. It comprises an almost complete thrust slice of oceanic crust with sheeted dykes, gabbros, Moho transition sequence, and upper-mantle peridotites, underlain by a metamorphic sole. Despite the importance of the Lizard ophiolite in understanding Variscan tectonics, the origin and age of the Lizard ophiolite are debated. We present new field observations, structural maps and cross-sections of the Lizard ophiolite from extensive re-mapping, integrated with U–Pb geochronology, petrology, thermobarometry, and whole rock geochemistry. We report new U–Pb zircon (CA-ID-TIMS and LA-ICPMS) ages of 386.80 ± 0.25/0.31/0.52 Ma (Givetian) from a plagiogranite dyke intruding the Crousa Gabbros at Porthoustock, and 395.08 ± 0.14/0.22/0.47 Ma (Emsian) from partial melts of the metamorphic sole Landewednack Amphibolites at Mullion Cove. These ages, respectively, precisely date the formation of the Lizard ophiolite oceanic crust, and the age of cooling post peak-metamorphism of the sole. Petrological modeling on the Landewednack Amphibolites suggests peak metamorphic conditions of 10 ± 2 kbar and 600 ± 75°C. We demonstrate that the Lizard ophiolite formed as a supra-subduction zone ophiolite overlying an inverted metamorphic sole, and we combine our observations and data into a new geodynamic model for the formation and obduction of the ophiolite. The current data supports an induced subduction initiation model.Natural Environment Research Council (NERC)University of OxfordLeverhulme Trus

    Diabetes mellitus and the causes of hospitalisation in people with heart failure

    Get PDF
    Introduction Diabetes mellitus (DM) is associated with increased risk of hospitalisation in people with heart failure and reduced ejection fraction (HFrEF). However, little is known about the causes of these events. Methods Prospective cohort study of 711 people with stable HFrEF. Hospitalisations were categorised by cause as: decompensated heart failure; other cardiovascular; infection or other non-cardiovascular. Rates of hospitalisation and burden of hospitalisation (percentage of follow-up time in hospital) were compared in people with and without DM. Results After a mean follow-up of 4.0 years, 1568 hospitalisations occurred in the entire cohort. DM (present in 32% [n=224]) was associated with a higher rate (mean 1.07 vs 0.78 per 100 patient-years; p<0.001) and burden (3.4 vs 2.2% of follow-up time; p<0.001) of hospitalisation. Cause-specific analyses revealed increased rate and burden of hospitalisation due to decompensated heart failure, other cardiovascular causes and infection in people with DM, whereas other non-cardiovascular causes were comparable. Infection made the largest contribution to the burden of hospitalisation in people with and without DM. Conclusions In people with HFrEF, DM is associated with a greater burden of hospitalisation due to decompensated heart failure, other cardiovascular events and infection, with infection making the largest contribution

    Release of oxidizing fluids in subduction zones recorded by iron isotope zonation in garnet

    Get PDF
    Subduction zones are key regions of chemical and mass transfer between the Earth’s surface and mantle. During subduction, oxidized material is carried into the mantle and large amounts of water are released due to the breakdown of hydrous minerals such as lawsonite. Dehydration accompanied by the release of oxidizing species may play a key role in controlling redox changes in the subducting slab and overlying mantle wedge. Here we present measurements of oxygen fugacity, using garnet–epidote oxybarometry, together with analyses of the stable iron isotope composition of zoned garnets from Sifnos, Greece. We find that the garnet interiors grew under relatively oxidized conditions whereas garnet rims record more reduced conditions. Garnet ή56Fe increases from core to rim as the system becomes more reduced. Thermodynamic analysis shows that this change from relatively oxidized to more reduced conditions occurred during lawsonite dehydration. We conclude that the garnets maintain a record of progressive dehydration and that the residual mineral assemblages within the slab became more reduced during progressive subduction-zone dehydration. This is consistent with the hypothesis that lawsonite dehydration accompanied by the release of oxidizing species, such as sulfate, plays an important and measurable role in the global redox budget and contributes to sub-arc mantle oxidation in subduction zones

    Secular change in earth processes: Preface

    No full text

    Emergence of blueschists on Earth linked to secular changes in oceanic crust composition

    No full text
    The oldest blueschists—metamorphic rocks formed during subduction—are of Neoproterozoic age1, and 0.7–0.8 billion years old. Yet, subduction of oceanic crust to mantle depths is thought to have occurred since the Hadean, over 4 billion years ago2. Blueschists typically form under cold geothermal gradients of less than 400 °C GPa−1, so their absence in the ancient rock record is typically attributed to hotter pre-Neoproterozoic mantle prohibiting such low-temperature metamorphism; however, modern analogues of Archaean subduction suggest that blueschist-facies metamorphic conditions are attainable at the slab surface3. Here we show that the absence of blueschists in the ancient geological record can be attributed to the changing composition of oceanic crust throughout Earth history, which is a consequence of secular cooling of the mantle since the Archaean4. Oceanic crust formed on the hot, early Earth would have been rich in magnesium oxide (MgO). We use phase equilibria calculations to show that blueschists do not form in high-MgO rocks under subduction-related geothermal gradients. Instead, the subduction of MgO-rich oceanic crust would have created greenschist-like rocks—metamorphic rocks formed today at low temperatures and pressures. These ancient metamorphic products can hold about 20% more water than younger metamorphosed oceanic crust, implying that the global hydrologic cycle was more efficient in the deep geological past than today
    • 

    corecore