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Subduction zones are the primary areas of chemical and mass transfer between the Earth’s surface 

and the mantle. During subduction, the down going plate carries oxidized material into the mantle and 

releases large amounts of water through the breakdown of hydrous minerals1,2. This dehydration has been 

linked to subduction seismicity3, arc volcanism1,4,5, and redox (fO2) changes in the subducting slab and 

overlying mantle wedge6–10. Despite this, no petrologic record from the source of oxidizing (high- fO2) fluids 

from the down going slab has yet been observed. Recent work has demonstrated that the release of oxidizing 

species, such as sulfur (S), from the subducting slab may play a key role in controlling subduction zone redox 

processes11 and occurs coincident with fluid release associated with the breakdown of hydrous mineralogy 

such as lawsonite across the blueschist-eclogite facies transition12 . Here we show a record of progressive syn-

dehydration redox change recorded in zoned garnet crystals from Sifnos, Greece that grew through lawsonite 

breakdown during subduction ca. 45 million years ago.  Oxygen fugacities (fO2), calculated using garnet-

epidote oxybarometry for multiple growth zones within single garnet grains, have been coupled with stable Fe 

isotope compositions in the same growth zones. These combined measurements reveal that garnet interiors 

grew under relatively oxidized conditions, recording higher fO2 and lower δ56Fe values, whereas garnet rims 

record more reduced conditions with lower fO2 and higher δ56Fe values; this shift occurs during lawsonite 

dehydration, as shown by thermodynamic analysis.  These data show that the redox state of the residual 

mineral assemblages within the slab became more reduced during progressive subduction zone dehydration. 

This is consistent with the hypothesis that lawsonite dehydration accompanied by the release of oxidizing 
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species, such as sulfate, plays an important and measurable role in the global redox budget and provides a 

valuable contribution to sub-arc mantle oxidation. 

Oxygen fugacity (fO2), the chemical potential of oxygen in a system, is an intensive 

thermodynamic property that controls the speciation of multi-valent elements, such as iron, which 

regulates the ability of these elements to contribute to mineral forming reactions13. Because of this, fO2 is 

an important chemical control in a given environment, such as a subduction zone, where the subducting 

slab experiences multiple changes in mineral assemblages as a result of changes in pressure-temperature 

(P-T) conditions. During subduction, components of the downgoing lithosphere, including sediments, 

altered mafic oceanic crust, and serpentinized mantle, carry water and other volatiles into the subduction 

zone. It is widely accepted that while there is significant fluid loss during shallow subduction, hydrous 

phases in the downgoing slab, such as lawsonite, chlorite, chloritoid, phengite, and serpentine retain water 

to greater depths1,2,14. Lawsonite, CaAl2Si2O7(OH)2-H2O, is a common hydrous mineral in mafic oceanic 

crust and contains ~12 wt% water, 1,2,14making the metamorphic destabilization of lawsonite an important 

fluid-producing reaction within subduction zones. Much debate exists about the role of slab-derived fluids 

in oxidizing the overlying sub-arc mantle and how such fluids can be used to explain the oxidized and 

volatile-rich signatures observed in arc magmas relative to their MORB or OIB counterparts1,4–10,15. The 

role of strongly oxidizing sulfur in governing subduction zone redox processes has received much 

attention7,9,11,12 and recent work has suggested that the release of oxidizing sulfur species, predominantly 

from the breakdown of sulfates, may occur across the blueschist-eclogite facies transition, coincident with 

the breakdown of hydrous phases such as chlorite, talc and lawsonite12. Evaluation of redox-budget fluxes 

from the subducting slab suggests that the release of sulfate, in fluids from the subducting slab, may play 

a key role in generating the elevated fO2 values proposed for the sub-arc mantle12,16. Here we present a 

novel geochemical method on the scale of individual mineral growth zones to document the redox nature 

of the fluids released during key subduction dehydration events.  

To identify the source of these oxidizing (high- fO2) fluids, we use the exhumed rock record to 

constrain the fO2 of the residual slab mineral assemblage, which records redox changes resulting from 
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dehydration reactions. There exist limited tools with which to measure the fO2 of the residual slab 

assemblages. Recent work has demonstrated the utility of garnet as a robust recorder of changing 

conditions during its formation and growth, often spanning millions of years17–19. Here we present the first 

high precision stable Fe isotope measurements of individual garnet growth zones to examine the evolving 

fO2 of the down-going slab during subduction. Changes in oxidation state are manifested in the Fe3+/ΣFe 

ratio of minerals and result in a redox driven fractionation of Fe isotopes, as heavier Fe isotopes (higher 

δ56Fe values) are preferentially incorporated in bonds involving Fe3+ relative to Fe2+ when the system is in 

equilibrium20,21. Previous work on slab serpentinites has suggested that subducting slab material will lose 

isotopically light iron with increasing grade, as a result of the release of fluids enriched in Fe2+ in the form 

of aqueous Fe2+-SOX, Fe2+-Cl2, and Fe2+-COX complexes22. Despite this, no such effect has been 

resolvable on a whole rock scale for meta-mafic lithologies within subduction zones23. In our study, iron 

isotope measurements are coupled with garnet-epidote oxygen barometry calculations24, using multiple 

epidote inclusions sampled radially within a single garnet grain (Fig.1), to provide a record of fO2 change 

during garnet growth. This study proposes the use of the relationship between the oxidation state and the 

isotopic composition of Fe recorded at the mineral scale, within zoned garnet crystals, as a tracer of fO2 

change and the release of fluids containing oxidizing species during metamorphic devolatilization of 

subducting oceanic crust. 

Applying these methods, we present Fe isotope data and oxygen fugacity calculations (Figs. 1,2) 

for three zoned garnet crystals hosted within subducted and exhumed metabasalts from Sifnos, Greece. 

Plotting fO2 as ΔlogFMQ against δ56Fe for samples 09DSF-23E and 09DSF-54A illustrated in Fig. 2, 

shows a significant change from more oxidized garnet interiors (higher ΔlogFMQ) with a lighter Fe 

isotope signature (lower δ56Fe) isotopes to more reduced garnet rims (lower ΔlogFMQ) with a higher 

δ56Fe compositions. Sample 06MSF-6C shows no significant change in calculated fO2 (ΔlogFMQ) values 

from garnet interior to rim and only a minor variation in δ56Fe, with lower δ56Fe values in the garnet core 

than in the garnet rim (Fig. 2). Oxygen fugacity values calculated here are consistent with the typical 
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range of subducted metabasaltic fO2 values24–27 in that they show more oxidized conditions, relative to the 

fayalite-magnetite-quartz (FMQ) buffer, than unaltered mid-ocean ridge basalt (MORB)7.  The data from 

the intermediate garnet zones of sample DSF-23E allow for the possibility of a small increase in 

ΔlogFMQ before the sharp drop to the rim.  We can only speculate on the cause of this possible increase; 

perhaps this reflects the influx of an oxidizing fluid from a deeper dehydrating assemblage as it passes 

through the system.  Regardless, the key result from our data is the sharp drop in fO2 from garnet interior 

zones to the rim: a drop that coincides with a sharp increase in δ56Fe values. 

These data show that there is significant redox change recorded in the mafic component of the 

slab during subduction at the mineral scale. In order to explore the possible link between these redox 

changes recorded in garnet and key dehydration reactions, thermodynamic modelling constraints on the 

P-T evolution of these samples are shown in Fig. 3 and Supplementary Figures 6 and 7. For samples 

09DSF-23E (Fig. 3) and 09DSF-54A (Supplementary Figure 6), garnet growth spanned the onset of 

lawsonite breakdown along  subduction zone P-T paths for Sifnos, Greece18,19,28. To the contrary, garnets 

in sample 06MSF-6C likely ceased growing prior to lawsonite breakdown (Supplementary Figure 7 and 

Dragovic et al., 2012). This suggests that processes operating during the breakdown of lawsonite are 

responsible for causing the change in fO2 from garnet interior zones to the rim recorded in 09DSF-23E 

and 09DSF-54A. These observations support the hypothesis that the dehydration of lawsonite plays a key 

role in liberating fluids, which can then become carriers of oxidizing species, thus altering the redox state 

of the subducting metamorphic mineral assemblage.  Overall, our data reveal that garnet interiors grew 

under relatively oxidized conditions, recording higher fO2 and lower δ56Fe values, whereas garnet rims 

record more reduced conditions with lower fO2 and higher δ56Fe values with this shift occurring during 

lawsonite dehydration.   

While bulk rock Fe3+/ΣFe ratios can become decoupled from fO2, the observed inverse 

relationship from garnet interiors to rims between increasing δ56Fe values and decreasing fO2 (Fig. 1D) 

confirms that Fe isotope fractionation is linked to changing redox conditions. To account for the observed 
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covariation between higher fO2 and lower δ56Fe in garnet interiors relative to lower fO2 and higher δ56Fe 

in garnet rims, we propose two possible mechanisms related to the release of oxidizing fluids. First, iron 

isotope fractionation occurs as an open system process, controlled by the solubility difference between 

Fe2+ and Fe3+. The higher solubility of Fe2+ relative to Fe3+ 29 promotes Fe isotope fractionation as lighter 

Fe isotopes are complexed into oxidizing fluids, in the form of Fe2+-SOX and Fe2+-COX complexes which 

are subsequently removed from the system. The progressive removal of Fe2+ bearing, isotopically light 

fluids is recorded by prograde garnet growth in the residual source rock, and can explain the shift from 

light to heavy Fe isotope compositions between garnet interiors and rims. In this scenario, the iron 

isotopes act as a tracer of the release of oxidizing species, with which Fe2+ preferentially complexes, 

within fluids released during the breakdown of hydrous mineralogy. 

A second, complementary mechanism is that Fe isotope fractionation is controlled by the bulk 

rock Fe3+/ΣFe ratio in a closed system with respect to Fe, with changing oxygen fugacity. Fluids charged 

with oxidizing species leave the system, reducing the fO2 of the system, and leaving behind a more 

reduced residual mineral assemblage enriched in Fe2+. This fO2 change does not alter the whole rock Fe 

isotope composition, but instead, as garnet more readily incorporates isotopically light Fe2+, causes a shift 

towards higher δ56Fe values within garnet crystal rims due to simple Rayleigh fractionation. In this case, 

the iron isotopes act as a more direct tracer of the changing bulk rock Fe3+/ΣFe ratio and fO2. While it is 

difficult to determine which is the dominant mechanism responsible for the observed Fe isotope 

fractionation, it is plausible that during garnet growth a combination of these two mechanisms could 

contribute, as both are driven by the release of oxidizing fluids during progressive dehydration.  

The large drop change in fO2 (ΔlogFMQ) and increase in δ56Fe values observed towards the 

garnet rim in samples 09DSF-23E (Fig. 1&2) and 09DSF-54A (Fig. 2), coincides with the interval of 

lawsonite breakdown and release of a free fluid phase as shown by thermodynamic modeling (Fig. 3 and 

Supplementary Figure 6). Whilst the lawsonite breakdown reaction itself did not directly create the 

oxidizing nature of those fluids, thermodynamic modelling has shown that the sulfate mineral, anhydrite 
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(CaSO4), undergoes destabilization around the blueschist to eclogite transition at the same P-T conditions 

as the breakdown of lawsonite12. As a result, it is suggested that fluids produced during lawsonite 

dehydration could be charged with SOX complexes released from the coincident breakdown of anhydrite 

in neighboring lithologies, and thus serve as a powerful oxidant within these fluids. This hypothesis is 

fully supported by the trends in the Fe-isotope and fO2 data, as light Fe is preferentially removed as Fe2+-

SOX complexes29, leaving a progressively more reduced residual assemblage. We conclude that this data 

supports the hypothesis that the breakdown of lawsonite during subduction produces a fluid that 

influences the redox state and iron isotopic signatures of the subducting mafic slab, which plays an 

important role in the overall global redox budget. In addition, this study provides the first evidence that Fe 

isotope variations in zoned garnets are a sensitive recorder of dehydration-driven redox change occurring 

during metamorphism of subducting oceanic lithosphere.  

Much debate exists about the cause of volatile enrichment and oxidized nature of arc magmas1,4–

10,15. It is widely accepted that fluids released from the subducting slab are responsible for altering the 

sub-arc mantle, the source region for arc magmas. A number of studies propose that these fluids, 

originating from dehydration of oceanic sediments, mafic crust, and serpentinized mantle, are the agents 

of mantle wedge oxidation and have shown that the transfer of oxidizing species from the slab to the sub-

arc mantle within these metamorphic fluids are capable of causing significant shifts in the fO2 of the sub-

arc mantle7,9,10. Alternatively, it has been suggested that the oxidation of arc magmas may occur during 

magmatic differentiation or degassing15,16. This study provides evidence for redox change in the mafic 

component of the downgoing slab inferred to be the result of the release of oxidizing fluids during 

lawsonite breakdown. By fingerprinting the source of oxidizing (high- fO2) fluids in the subducting slab, 

our study provides support for the idea that slab-derived fluids play an important role in the oxidation of 

the sub-arc mantle and related arc volcanic magmas. 
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Figure 1 – A) BSE image of the garnet grain used for Fe isotope and oxybarometry analysis in sample 
09DSF-23E. Epidote inclusions used in oxybarometry calculations are shown as red circles and sampling 
zones used for iron isotope measurements indicated by colored regions. B) Example of an epidote 
inclusion used in oxybarometry calculations. C) Example of a lawsonite pseudomorph that was avoided in 
oxybarometry calculations. D) δ56Fe (top) and ΔlogFMQ (bottom) values for sample 09DSF-23E plotted 
from garnet rim to rim. δ56Fe values were analyzed once for each garnet zone and have been plotted 
symmetrically to show trends from garnet rim to rim with measurements plotted as solid lines with 
associated errors indicated by the shaded regions. Error calculations for the δ56Fe data are the two-
standard deviation of four isotopic analysis for each sample. Errors for the ΔlogFMQ values are ±0.2 log 
units for the core (purple) and rim (red) points, calculated using the ±1kbar and ±40°C errors associated 
with P-T estimates from thermodynamic modeling30. The errors for the ΔlogFMQ of the intermediate 
zones are calculated accounting for the slightly larger uncertainty in the P-T conditions and were 
calculated using upper and lower bounds for the possible P-T conditions (see further discussion in 
methods section and calculations in Supplementary Table 5). 
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Figure 2–Iron isotope data, presented as δ56Fe values, plotted against the ΔlogFMQ values for each zone 
(core, intermediate zones, rim). 09DSF-54A is plotted in blue, 09DSF-23E in green, and 06MSF-6C in 
orange. Each fO2 data point represents a composite of all epidote inclusion-garnet pairs in that zone for 
the garnet. The arrows show the general trends in the data from the core (diamond markers) to 
intermediate zones (square markers) to garnet rims (circle markers). Error calculations for the δ56Fe data 
are the two-standard deviation of four isotopic analysis for each sample. All error for ΔlogFMQ are ±0.2 
log units based on ±1kbar and ±40°C error associated with P-T estimates from thermodynamic 
modeling30. 
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Figure 3 – a) Pressure-temperature (P-T) diagram showing P-T path during garnet growth for 
samples 09DSF-23E (green) and 06MSF-6C (orange). P-T path between garnet core and rim for sample 
09DSF-23E is based on Sifnos P-T paths by Dragovic et al., (2012), Dragovic et al., (2015) and Groppo et 
al., (2009). The cartoon garnet zone symbols along the P-T path show the approximate P-T conditions at 
which these zones are interpreted to grow. Conditions of garnet growth for sample 09DSF-54A (not 
shown) is very similar to that for 09DSF-23E. Phases are labeled for fields showing P-T conditions where 
epidote, lawsonite, and lawsonite + epidote are stable. b) Cumulative modal mineral volume abundance 
(%) for sample 09DSF-23E along the prograde and retrograde P-T path given in the inset of Figure 3a. 
The onset of lawsonite breakdown releases a free fluid phase, shown as the light blue field and marked by 
the white dashed line at ~515C. c) Cartoon showing conditions for sample 09DSF-23E at labeled points 1, 
2, and 3 on the P-T and cumulative modal abundance diagrams (Fig. 3a and 3b). 
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Methods  

Oxygen fugacity, iron isotope, and thermodynamic modeling methods used in this study are 

presented below for samples 09DSF-23E, 09DSF-54A, and 06MSF-6C. All three samples are metabasalts 

collected from Sifnos, Greece. GPS locations for each sample are as follows: 09DSF-23E- N 37° 01.598′, 

E 24° 39.396′, 09DSF-54A- N 37° 00.930′, E 24° 39.360′, and 06MSF-6C- N 37° 01.561′, E 24° 39.452′. 

 

Oxygen Fugacity Calculations  

Oxygen fugacity methods and calculations are based on the oxygen barometer chemistry of 

Donohue & Essene (2002) utilizing the THERMOCALC program and thermodynamic database of 

Holland and Powell (1998). To ensure epidote inclusions are suitable for use in garnet-epidote oxygen 

barometer calculations, care was taken to identify primary epidotes, rather than compositionally patchy 

epidotes that reflect pseudomorphs after lawsonite. Epidote inclusions used in oxybarometry calculations 

(Supplementary Figure 2, Supplementary Figure 3, and Supplementary Figure 4) are in equilibrium with 

the surrounding garnet and show little to no cation zonation in BSE analysis. Epidote inclusions 

interpreted to be lawsonite pseudomorphs shows cation zonation visible in BSE and are accompanied by 

either paragonite or albite, representing breakdown products of lawsonite, (Supplementary Figure 5) and 

were avoided for this study.  

Garnet and epidote endmember activities (Supplementary Table 3) were obtained at the 

appropriate P-T’s for each epidote-garnet pair (Supplementary Tables 1, 5, 6, 7) by inputting major 

element compositions of garnet and epidote minerals into the AX program (Tim Holland, University of 

Cambridge). Mineral compositions were acquired using wavelength dispersive spectrometry (WDS) on a 

JEOL-JXA-8200 electron microprobe at the Massachusetts Institute of Technology (Supplementary Table 

4). All spot analyses were carried out using an acceleration voltage of 15kv, a current of 20nA, and 

approximate spot size of 5µm. Oxygen fugacity values (Supplementary Table 1) were calculated by 

imputing endmember activities of each epidote-garnet pair and the appropriate pressure and temperature 

into the thermodynamic modeling program, THERMOCALC31,32,33 using the equation: 
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  2 Ca2FeAl2Si3O12(OH) = 2 Ca2FeAl2Si3O12 + H2O + 1/2 O2          (1) 

Epidote (Ps33Czo67)      Garnet (Alm33Grs67)     Fluid 

Which, can be rewritten to include grossular and almandine garnet end-members: 

   12Ca2FeAl2Si3O12(OH) = 8Ca3Al2Si3O12 + 4Fe3Al2Si3O12 + 6H2O + 3O2          (2) 

      Epidote (Ps33Czo67)        Grs garnet          Alm garnet              Fluid  

Oxygen fugacity results are reported as ΔlogFMQ, the difference between the calculated sample 

fO2 and the FMQ buffer at a given P-T: 

ΔlogFMQ = (Sample fO2 P-T - FMQP-T) 

To obtain ΔlogFMQ values for each fO2 value, the FMQ buffer was recalculated using the P-T 

conditions of each garnet-epidote oxybarometer pair used in fO2 calculations. 

The calculation of the Fe3+ (andradite) component from the electron microprobe analyses was 

carried out using the charge-balance method described in Quinn et al. (2016). As these charge-balance 

calculations of garnet compositions yield a low andradite component (<1.5% andradite component for 

garnet compositions in all three samples), garnet compositions used in oxygen fugacity calculations 

assume all iron in garnet is Fe2+.  The effects of Fe3+ substitution within garnet is minor, with the 

exception of within highly andraditic garnets (Donohue and Essene, 2000). The substitution of 15 mol% 

Fe3+/ƩFe, replacing Al in garnet, causes a shift of only ~0.1 log fO2 units (Donohue and Essene, 2000). 

All iron in epidote mineral formulas used in oxygen fugacity calculations is assumed to be Fe3+. 

Calculations assume a unit H2O activity of 1 based on low salinity measurements of garnet fluid 

inclusions from Cycladic metabasalts34 and the low modal abundance of carbonate. Errors in ΔlogFMQ 

(unless stated otherwise) are ±0.2 log units based on the ±1kbar and ±40°C thermodynamic modeling 

error for P-T estimates presented in Palin et al. (2016). 

Oxygen fugacity calculations for epidote-garnet pairs in core and rim zones use estimated 

pressures and temperatures of formation for each sample based on garnet isopleth thermodynamic 

modeling for samples 09DSF-23E (Supplementary Figure 7A&B), and 09DSF-54A (Supplementary 
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Figure 7C&D), and 06MSF-6C18. Without accurate P-T estimates for epidote inclusions in intermediate 

garnet zones, P-T’s were estimated using a P-T path from Sifnos, Greece with the prograde slope of 

Dragovic et al. (2012), and Dragovic et al. (2015). Thermodynamic modelling constraints suggest that the 

majority of garnet growth, likely including all of the intermediate zone growth, occurs at lower P-T 

conditions, shortly after the initial growth of the core (Figure 3b; Supplementary Figure 6). As a result, 

the P-T conditions chosen for the fO2 calculations within the intermediate zones are close to those of the 

core, projecting a small distance along the estimated P-T path (Figure 3; Supplementary Table 1). To 

estimate the uncertainties on these calculated intermediate zone fO2 values, both the uncertainties in the 

P-T calculations (±1kbar; ±40°C) and the choice of P-T conditions were considered. Given that modelling 

shows very early garnet growth, it is plausible that all intermediate zone garnet growth occured at the core 

conditions. Thus fO2 values were calculated over a range of different P-T conditions, considering that 

garnet growth may have occurred anywhere between the core conditions and the chosen P-T conditions 

along the P-T path. The minimum bound on the fO2 is calculated using the core conditions minus the P-T 

uncertainty (-1kbar; -40°C) whilst the maximum bound is calculated using the chosen P-T conditions plus 

the P-T uncertainty (+1kbar; +40°C) (see Supplementary Tables 5, 6 and 7). The resulting range of fO2 

values is considered to represent the uncertainty in these intermediate garnet zone calculations, shown in 

Figure 1c and Supplementary Figure 1. In practice, the resulting uncertainty in the fO2 values is very 

similar to the ±0.2 log units used for the rim and core points (Figure 1c; Supplementary Figure 1). Whilst 

there is a range in intermediate zone fO2 for samples 09DSF-23E and 09DSF-54A, the main trend is that 

the fO2 values clearly show a change from more oxidized garnet interiors to more reduced garnet rims in 

both samples independent of the choice of P-T path (Figure 1c and 2).  

 

Iron Isotopes   

Iron isotope ratios are reported as δ56Fe and δ57Fe using the IRMM-014 external standard with 2-

standard deviation reported error (Supplementary Table 2).    
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δ56Fe = ((56Fe/54Fesample)/(56Fe/54FeIRMM-014)-1)*100 

δ57Fe = ((57Fe/54Fesample)/(57Fe/54FeIRMM-014)-1)*100 

Garnet powders used in iron isotope measurements were cleansed of inclusions and fully 

dissolved at Boston College (USA) before being passed through an iron exchange chromatographic 

procedure and analyzed for Fe isotope ratios at Durham University (UK). Growth zones were separated in 

individual garnet grains using the micro-drilling techniques presented in Pollington and Baxter (2011) to 

obtain three zones (core, zone 2, and rim) from samples 09DSF-54A and 06MSF-6C and four zones 

(core, zone 2, zone 3, and rim) from sample 09DSF-23E. Each garnet zone is then crushed to a 75-150µm 

grain size and any visible inclusions were removed by handpicking and magnetic separation.  

Samples were then put through a partial dissolution process, alternating dilute hydrofluoric and 

nitric acid steps to cleanse the garnet of inclusions. 10-50 mg of the picked garnet separate is heated at 

120°C and sonicated in a closed beaker with 1 mL deionized Milli-Q water and 5-90 µL concentrated 

hydrofluoric acid added to 1 mL of Milli-Q water based on the starting amount of garnet for 120 minutes 

to dissolve inclusions. This acid mixture is then decanted and the garnet residue washed with 1mL of 

Milli-Q water four times. The residual garnet is then sonicated and heated at 120°C for 120 minutes in 2 

mL 7 M nitric acid to completely dissolve any secondary fluorides. The nitric acid is decanted and the 

garnet residue is washed in 1mL 2 M nitric acid twice and 1mL Milli-Q water twice. This process is 

repeated until >50% of the original garnet has been dissolved. The inclusion-cleansed garnet residual is 

then fully dissolved using hydrofluoric acid, nitric acid, and hydrochloric acid.  

Tests were conducted to explore potential Fe isotope fractionation during the partial dissolution 

process described above. Pure gem quality garnets with no visible inclusions from Mason Mountain 

Mine, North Carolina were crushed and subjected to various partial dissolution procedures. To test 

potential fractionation due to the acids used, garnet was partially dissolved separately in 7 M nitric, 

concentrated HF acid, and was also subjected to the full partial dissolution procedure described above. 

The resulting δ56Fe compositions are all within error between pure garnet with no partial dissolution 
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(0.015 ± 0.046), garnet after partial dissolution cleansing in nitric acid (0.085 ± 0.028), garnet after partial 

dissolution cleansing in HF and nitric acid (0.08 ± 0.05), and garnet subjected to the full nitric-HF multi-

stage partial dissolution technique (0.06 ± 0.033). While the starting garnet may not have been perfectly 

pure, the partial dissolution cleansing removed those inclusions (with lower δ56Fe) leaving behind a pure 

garnet with higher δ56Fe. Importantly, after this initial stage of partial dissolution cleaning, all subsequent 

steps to further treat the garnets yielded identical δ56Fe. This indicates the success of the method in 

removing the effects of non-garnet inclusions, but not altering the δ56Fe of the pure garnet itself. Based on 

these results, the HNO3-HF multi-step partial dissolution was deemed appropriate to cleanse garnet of 

inclusions without fractionating iron isotope compositions. All garnet separates used in this study were 

subject to identical cleansing and preparation procedure. Sample drilling, crushing, and the partial and full 

dissolution processes were completed in the clean lab at Boston College.  

Iron isotope measurements of the minerals were analyzed at Durham University between August 

and October 2017. The quantitative purification of Fe from the matrix elements was achieved using a 

protocol adapted from Dauphas et al. (2004). In this method 1.2 ml of BioRad AG1-X8 (200-400 mesh) 

anion exchange resin was packed onto 11.5 ml total capacity polypropylene columns, which was cleaned 

with passes of 10 ml MQ H2O and 10 ml 6 M HCl repeated 4 times each. The resin was preconditioned 

with 2 ml of 6 M HCl and the sample loaded onto the column in 250 µl of 6 M HCl. The matrix was 

eluted from the retained Fe species by adding 8 ml of 6 M HCl and discarded. Iron was quantitatively 

recovered from the column by adding 9 ml 0.4 M HCl, and subsequently collected into clean 15 ml 

Savillex Teflon beakers. The pure Fe solution was evaporated to dryness and brought back into solution 

in 2 ml of 0.5 M HNO3 prior to analysis by mass spectrometry. Prior calibration of this chromatographic 

ion exchange protocol demonstrated that the recovered Fe fraction was devoid of any isobaric elements 

(namely Cr and Ni) and totaled >99% of the Fe loaded into the column. 

Iron isotope abundances were measured on a Thermo Scientific Neptune Plus MC-ICP-MS at 

Durham following the procedure of Weyer and Schwieters (2003). The instrument was run in medium-
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resolution mode which gave a typical mass resolving power of ~6500, adequate to discriminate between 

the 40Ar14N+, 40Ar16O+ and 40Ar16OH+ polyatomic species that are isobaric on the 54Fe+, 56Fe+, and 57Fe+ 

masses respectively. Samples were introduced to the plasma interface using an Elemental Scientific SIS 

quartz spray chamber coupled with a PFA 50 µl/min nebulizer. All of the Fe masses were collected, as 

were 53Cr+ and 60Ni+, in the movable faraday collectors, mounted within the back end of the instrument.  

53Cr+ and 60Ni+ were used to correct, using the natural abundances, for any isobaric interference from 

these elements on the 54Fe+ and 58Fe+ masses. In all cases this correction had no effect on the calculated 

ratio as Cr and Ni were quantatively removed from the sample solution prior to analysis by column 

chemistry. Instrumental mass bias was corrected using standard sample bracketing, where IRMM-014 

was used as the bracketing standard. Precision and accuracy was assessed by measuring both an in-house 

secondary reference solution (Durham FeWire) and an external geo-reference material (USGS BIR 1). A 

total of 81 Durham FeWire analyses gave a mean of δ56Fe of +0.23 ± 0.04 ‰ and a δ57Fe of +0.37 ± 

0.06 ‰ (n=81). Two aliquots of the BIR-1 geo-reference material were processed through two different 

batches of chemistry and analyzed a total of 4 times each. This gave an average δ56Fe of +0.06 ± 0.028 ‰ 

and a δ57Fe of +0.09 ± 0.021 ‰, which is in excellent agreement with published values for this 

standard38,39,40. Total procedural blank yielded <6ng Fe, which is negligible when compared to the total 

amount of Fe processed through the columns. The Fe isotope data for the samples analyzed as part of this 

study are reported in Supplementary Table 2 with error of two-standard deviation of four isotopic 

analyses for each sample. 

 

Thermodynamic Modeling 

To constrain the P-T conditions for garnet growth and the evolution of the metamorphic mineral 

assemblage during progressive subduction, P-T pseudosections and mineral modal plots were constructed 

using the thermodynamic program Perple_X (version 6.7.5)41 and the ‘ds 5.5’ update to the Holland and 

Powell (1998) internally-consistent dataset. The chemical system MnO-Na2O-CaO-K2O-FeO-MgO-

Al2O3-SiO2-H2O-TiO2-Fe2O3 (MnNCKFMASHTO) was used for all modelling. The following activity-
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composition models were used for phases involving solid solution: pyroxene and amphibole42, garnet 43, 

white mica44, 45, chlorite46, feldspar47, epidote and chloritoid31, spinel48, ilmenite 49, and carbonates 50. In all 

the calculations, quartz, lawsonite, rutile, kyanite, and sphene were assumed to be pure, with phase 

equilibria calculations run in fluid-undersaturated conditions (see discussion below). Fe2O3 contents for 

the bulk compositions were evaluated by combining the average composition of phases with their 

respective volume abundances. Ferric iron contents of mineral phases were estimated from electron 

microprobe analyses using the AX program (Tim Holland, University of Cambridge).  

Bulk compositions used for all phase equilibria calculations are shown in Supplementary Table 3, 

along with Fe3+/ΣFe (by mole fraction) used for each sample. Whole rock compositions were used in 

calculation of the P-T conditions of garnet growth initiation (garnet cores). As garnet is chemically zoned 

in both samples and the sequestration of components in zoned crystals can have a significant effect on 

both the effective composition of the rock and the resultant mineralogy51, independent bulk compositions 

of rock matrices were obtained by physical separation of garnet crystals from a whole rock volume. All 

bulk compositions (whole rocks and matrices) were determined by X-ray fluorescence (XRF) 

spectroscopy using a Phillips 2404 XRF vacuum spectrometer at Franklin and Marshall College.  

Path dependent forward models take into account the continuous fractionation of garnet and 

water, following Baxter and Caddick (2013), with a sequence of regularly spaced P-T increments, where 

at each increment, the composition and modal abundance of all stable phases is predicted. The models 

were run at 0.5˚C increments, with variable pressure increments. The P-T paths used for this modelling 

(Fig. 3A) were chosen based on the individual P-T gradients derived from Dragovic et al. (2015), also 

utilizing additional P-T constraints from Dragovic et al. (2012). The whole rock compositions were used 

as the initial bulk compositions for the phase fractionation calculations. The initial fluid contents for the 

phase fractionation calculations were determined based on repeat phase fractionation calculations to best 

model the observed mineralogy (of garnet inclusions and matrix) and volumetric mineral abundances. In 

order to reproduce the observed mineralogy, including the stable coexistence of lawsonite and epidote 
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during initial garnet growth, fluid undersaturated conditions were required. The initial fluid contents 

chosen for modelling of samples 09DSF-23E, 09DSF-54A, and 06MSF-6C are 6.0%, 4.0%, and 2.0%, 

respectively. Fluid in samples 09DSF-23E and 09DSF-54A were considered to be a fixed fluid H2O–CO2 

compositions of 1 mol.% CO2 – 99 mol.% H2O (09DSF-23E) and 10 mol.% CO2 – 90 mol.% H2O 

(09DSF-54A). Fluid in sample 06MSF-6C was considered to be pure H2O. These fluid compositions were 

estimated based on petrographic observations.  

P-T pseudosections were calculated for the P-T range of 1.0-2.5 GPa and 400-650˚C using the 

same a-x models listed above. The bulk composition used for the pseudosection modelling of each sample 

represents the effective bulk composition (garnet and water fractionated) calculated at 500˚C along the 

phase fractionation path. The fluid contents used for the pseudosections that estimate the P-T of garnet 

crystal cores are the same as those used as the initial fluid content for the phase fractionation calculations. 

For the pseudosections that estimate the P-T conditions of garnet crystal rims, the fluid content was based 

on predictions from the phase fractionation calculations for the remnant fluid content at the assumed P-T 

conditions of garnet rim growth (3.0% for 09DSF-23E and 2.7% for 09DSF-54A). An iterative analysis 

of fluid content resulted in broadly similar P-T pseudosections and predicted garnet rim P-T conditions. 

 

Rock descriptions 

Sample 09DSF-23E 

 A complete petrographic description of sample 09DSF-23E can be found in Brooks et al. (2019). 

Sample 09DSF-23E is a garnet-epidote blueschist that contains large (cm-sized), euhedral garnet crystals 

along with large (several mm-sized) rhombohedral crystals of epidote. The remaining rock matrix consists 

of glaucophane, phengite, quartz, rutile, calcite, apatite, and trace albite and ilmenite. Glaucophane, 

phengite and elongate rutile grains define the foliation. The cores of garnet crystals are inclusion-rich, 

consisting of omphacite and quartz, with minor chlorite, phengite, paragonite, epidote, apatite, rutile, and 

ilmenite. Garnet rims contain inclusions of glaucophane. Epidote inclusions in garnet occur in two 
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varieties; a) isolated subhedral inclusions that are regarded as primary epidote, and b) anhedral inclusions 

that are chemically zoned, always associated with albite and/or paragonite and are interpreted to be 

pseudomorphic after lawsonite.  

 The above observations reflect the characteristics of a blueschist-overprinted eclogite, wherein 

the peak pressure assemblage consists of garnet, Na-pyroxene (omphacite), glaucophane, phengite, 

epidote, quartz, rutile, and accessory phases. The blueschist overprint resulted in the growth of garnet 

rims, chemically zoned amphibole, rhombohedral epidote porphyroblasts, albite, and most notably the 

loss of matrix omphacite. 

Sample 09DSF-54A 

 Sample 09DSF-54A is a garnet-epidote blueschist consisting of large, cm-sized garnet 

porphyroblasts and cm-sized rhombohedral epidote crystals. The rock matrix is dominated by 

glaucophane, with lesser amounts of phengite, Na-pyroxene (aegerine), quartz, and titanite. Glaucophane 

and phengite define the foliation. Garnets are inclusion-rich, comprised of Na-pyroxene (aegerine and 

jadeite), phengite, epidote, paragonite, quartz, and rutile. As in sample 09DSF-23E, epidote occurs as a 

primary phase and in association with albite and/or paragonite, interpreted to be pseudomorphic after 

lawsonite. 

 Sample 09DSF-54A is regarded as a partially blueschist-overprinted eclogite.  The peak eclogite 

assemblage consists of garnet, Na-pyroxene (aegerine and jadeite), phengite, epidote, quartz, and rutile. 

The blueschist overprint is only partial, as Na-pyroxene, a prograde to peak phase, has not been fully 

replaced by lower pressure re-equilibration. The partial blueschist overprint is comprised of glaucophane, 

rhombohedral epidote porphyroblasts, lower-Si phengite, and the replacement of rutile by titanite. 

Sample 06MSF-6C 

 A complete petrographic description of sample 06MSF-6C can be found in Dragovic et al. 

(2012). Sample 06MSF-6C is a garnet-epidote blueschist containing cm-sized porphyroblasts of garnet 

and mm-sized rhombohedral crystals of epidote crosscutting the matrix foliation. Garnet contains 

inclusions of quartz, Na-pyroxene (jadeite), glaucophane, chloritoid, paragonite, phengite, and rutile. 
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Unlike the above two samples, epidote was found as inclusions in garnet solely as pseudomorphic after 

lawsonite in garnet mantles and rims. Rare lawsonite was found as inclusions in garnet cores. The rock 

matrix is defined by glaucophane and white mica (both paragonite and phengite), but also consists of 

rhombohedral epidote, rutile, quartz, and anhedral masses of jadeitic pyroxene.  

 Sample 06MSF-6C is interpreted to be a transitional blueschist to eclogite facies lithology. The 

peak assemblage is comprised of garnet, jadeite, glaucophane, paragonite, phengite, quartz and rutile. 

Matrix re-equilibration during the early stages of exhumation resulted in growth of rhombohedral epidote, 

paragonite and phengite that crosscuts the foliation.  

 

Data Availability 

The authors declare that the data generated or analyzed during this study are included in this published 

article and its Supplementary Information files. 
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