63 research outputs found

    Countries with Higher Levels of Gender Equality Show Larger National Sex Differences in Mathematics Anxiety and Relatively Lower Parental Mathematics Valuation for Girls.

    Get PDF
    Despite international advancements in gender equality across a variety of societal domains, the underrepresentation of girls and women in Science, Technology, Engineering, and Mathematics (STEM) related fields persists. In this study, we explored the possibility that the sex difference in mathematics anxiety contributes to this disparity. More specifically, we tested a number of predictions from the prominent gender stratification model, which is the leading psychological theory of cross-national patterns of sex differences in mathematics anxiety and performance. To this end, we analyzed data from 761,655 15-year old students across 68 nations who participated in the Programme for International Student Assessment (PISA). Most importantly and contra predictions, we showed that economically developed and more gender equal countries have a lower overall level of mathematics anxiety, and yet a larger national sex difference in mathematics anxiety relative to less developed countries. Further, although relatively more mothers work in STEM fields in more developed countries, these parents valued, on average, mathematical competence more in their sons than their daughters. The proportion of mothers working in STEM was unrelated to sex differences in mathematics anxiety or performance. We propose that the gender stratification model fails to account for these national patterns and that an alternative model is needed. In the discussion, we suggest how an interaction between socio-cultural values and sex-specific psychological traits can better explain these patterns. We also discuss implications for policies aiming to increase girls' STEM participation

    Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar

    Get PDF
    We study the process e+eJ/ψπ+πe^+e^-\to J/\psi\pi^{+}\pi^{-} with initial-state-radiation events produced at the PEP-II asymmetric-energy collider. The data were recorded with the BaBar detector at center-of-mass energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454 fb1\mathrm{fb^{-1}}. We investigate the J/ψπ+πJ/\psi \pi^{+}\pi^{-} mass distribution in the region from 3.5 to 5.5 GeV/c2\mathrm{GeV/c^{2}}. Below 3.7 GeV/c2\mathrm{GeV/c^{2}} the ψ(2S)\psi(2S) signal dominates, and above 4 GeV/c2\mathrm{GeV/c^{2}} there is a significant peak due to the Y(4260). A fit to the data in the range 3.74 -- 5.50 GeV/c2\mathrm{GeV/c^{2}} yields a mass value 4244±54244 \pm 5 (stat) ±4 \pm 4 (syst)MeV/c2\mathrm{MeV/c^{2}} and a width value 11415+16114 ^{+16}_{-15} (stat)±7 \pm 7(syst)MeV\mathrm{MeV} for this state. We do not confirm the report from the Belle collaboration of a broad structure at 4.01 GeV/c2\mathrm{GeV/c^{2}}. In addition, we investigate the π+π\pi^{+}\pi^{-} system which results from Y(4260) decay

    Carrion Availability in Space and Time

    Get PDF
    Introduction Availability of carrion to scavengers is a central issue in carrion ecology and management, and is crucial for understanding the evolution of scavenging behaviour. Compared to live animals, their carcasses are relatively unpredictable in space and time in natural conditions, with a few exceptions (see below, especially Sect. “Carrion Exchange at the Terrestrial-Aquatic Interface”). Carrion is also an ephemeral food resource due to the action of a plethora of consumers, from microorganisms to large vertebrates, as well as to desiccation (i.e., loss of water content; DeVault et al. 2003; Beasley et al. 2012; Barton et al. 2013; Moleón et al. 2014). With a focus on vertebrate carcasses, here we give an overview of (a) the causes that produce carrion, (b) the rate of carrion production, (c) the factors affecting carrion quality, and (d) the distribution of carrion in space and time, both in terrestrial and aquatic environments (including their interface). In this chapter, we will focus on naturally produced carrion, whereas non-natural causes of animal mortality are described in chapter “Human-Mediated Carrion: Effects on Ecological Processes”. However, throughout this chapter we also refer to extensive livestock carrion, because in the absence of strong restrictions such as those imposed in the European Community after the bovine spongiform encephalopathy crisis (Donázar et al. 2009; Margalida et al. 2010), the spatiotemporal availability of carrion of extensive livestock and wild ungulates is similar

    Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Get PDF
    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA

    A Decade of Multiwavelength Observations of the TeV Blazar 1ES 1215+303: Extreme Shift of the Synchrotron Peak Frequency and Long-term Optical-Gamma-Ray Flux Increase

    Get PDF
    Blazars are known for their variability on a wide range of timescales at all wavelengths. Most studies of TeV gamma-ray blazars focus on short timescales, especially during flares. With a decade of observations from the Fermi-LAT and VERITAS, we present an extensive study of the long-term multiwavelength radio-to-gamma-ray flux-density variability, with the addition of a couple of short-time radio-structure and optical polarization observations of the blazar 1ES 1215+303 (z = 0.130), with a focus on its gamma-ray emission from 100 MeV to 30 TeV. Multiple strong GeV gamma-ray flares, a long-term increase in the gamma-ray and optical flux baseline, and a linear correlation between these two bands are observed over the ten-year period. Typical HBL behaviors are identified in the radio morphology and broadband spectrum of the source. Three stationary features in the innermost jet are resolved by Very Long Baseline Array at 43.1, 22.2, and 15.3 GHz. We employ a two-component synchrotron self-Compton model to describe different flux states of the source, including the epoch during which an extreme shift in energy of the synchrotron peak frequency from infrared to soft X-rays is observed

    Periastron Observations of TeV Gamma-Ray Emission from a Binary System with a 50-year Period

    Get PDF
    We report on observations of the pulsar/Be star binary system PSR J2032+4127/MT91 213 in the energy range between 100 GeV and 20 TeV with the Very Energetic Radiation Imaging Telescope Array and Major Atmospheric Gamma Imaging Cherenkov telescope arrays. The binary orbit has a period of approximately 50 years, with the most recent periastron occurring on 2017 November 13. Our observations span from 18 months prior to periastron to one month after. A new point-like gamma-ray source is detected, coincident with the location of PSR J2032+4127/MT91 213. The gamma-ray light curve and spectrum are well characterized over the periastron passage. The flux is variable over at least an order of magnitude, peaking at periastron, thus providing a firm association of the TeV source with the pulsar/Be star system. Observations prior to periastron show a cutoff in the spectrum at an energy around 0.5 TeV. This result adds a new member to the small population of known TeV binaries, and it identifies only the second source of this class in which the nature and properties of the compact object are firmly established. We compare the gamma-ray results with the light curve measured with the X-ray Telescope on board the Neil Gehrels Swift Observatory and with the predictions of recent theoretical models of the system. We conclude that significant revision of the models is required to explain the details of the emission that we have observed, and we discuss the relationship between the binary system and the overlapping steady extended source, TeV J2032+4130
    corecore