181 research outputs found
A Measurement of Rb using a Double Tagging Method
The fraction of Z to bbbar events in hadronic Z decays has been measured by
the OPAL experiment using the data collected at LEP between 1992 and 1995. The
Z to bbbar decays were tagged using displaced secondary vertices, and high
momentum electrons and muons. Systematic uncertainties were reduced by
measuring the b-tagging efficiency using a double tagging technique. Efficiency
correlations between opposite hemispheres of an event are small, and are well
understood through comparisons between real and simulated data samples. A value
of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is
statistical and the second systematic. The uncertainty on Rc, the fraction of Z
to ccbar events in hadronic Z decays, is not included in the errors. The
dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the
deviation of Rc from the value 0.172 predicted by the Standard Model. The
result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the
Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European
Physical Journal
Measurement of the B+ and B-0 lifetimes and search for CP(T) violation using reconstructed secondary vertices
The lifetimes of the B+ and B-0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z(0) decays recorded at LEP. Z(0) --> b (b) over bar decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results aretau(B+) = 1.643 +/- 0.037 +/- 0.025 pstau(Bo) = 1.523 +/- 0.057 +/- 0.053 pstau(B+)/tau(Bo) = 1.079 +/- 0.064 +/- 0.041,where in each case the first error is statistical and the second systematic.A larger data sample of 3.1 million hadronic Z(o) decays has been used to search for CP and CPT violating effects by comparison of inclusive b and (b) over bar hadron decays, No evidence fur such effects is seen. The CP violation parameter Re(epsilon(B)) is measured to be Re(epsilon(B)) = 0.001 +/- 0.014 +/- 0.003and the fractional difference between b and (b) over bar hadron lifetimes is measured to(Delta tau/tau)(b) = tau(b hadron) - tau((b) over bar hadron)/tau(average) = -0.001 +/- 0.012 +/- 0.008
Professional quality of life and organizational changes: a five-year observational study in Primary Care
<p>Abstract</p> <p>Background</p> <p>The satisfaction and the quality of life perceived by professionals have implications for the performance of health organizations. We have assessed the variations in professional quality of life (PQL) and their explanatory factors during a services management decentralization process.</p> <p>Methods</p> <p>It was designed as a longitudinal analytical observational study in a Health Area in Madrid, Spain. Three surveys were sent out during an ongoing management decentralization process between 2001 and 2005. The professionals surveyed were divided into three groups: Group I (97.3% physicians), group II (92.5% nurses) and group III (auxiliary personnel). Analysis of the tendency and elaboration of an explanatory multivariate model was made. The PQL -35 questionnaire, based on Karasek's demand-control theory, was used to measure PQL. This questionnaire recognizes three PQL dimensions: management support (MS), workload (WL) and intrinsic motivation (IM).</p> <p>Results</p> <p>1444 responses were analyzed. PQL increased 0.16 (CI 95% 0.04 – 0.28) points in each survey. Group II presents over time a higher PQL score than group I of 0.38 (IC 95% 0.18 – 0.59) points. There is no difference between groups I and III.</p> <p>For each point that MS increases, PQL increases between 0.44 and 0.59 points. PQL decreases an average of between 0.35 and 0.49 point, for each point that WL increases.</p> <p>Age appears to have a marginal association with PQL (CI 95% 0.00 – 0.02), as it occurs with being single or not having a stable relationship (CI 95% 0.01 – 0.41). Performing management tasks currently or in the past is related to poorer PQL perception (CI 95% -0.45 – -0.06), and the same occurs with working other than morning shifts (CI 95% -0.03 – -0.40 points).</p> <p>PQL is not related to sex, location of the centre (rural/urban), time spent working in the organization or contractual situation.</p> <p>Conclusion</p> <p>With the improvement in work control and avoiding increases in workloads, PQL perception can be maintained despite deep organizational changes at the macro-management level. Different professional groups experience different perceptions depending on how the changes impact their position in the organization.</p
Hung Out to Dry: Choice of Priority Ecoregions for Conserving Threatened Neotropical Anurans Depends on Life-History Traits
Background: In the Neotropics, nearly 35 % of amphibian species are threatened by habitat loss, habitat fragmentation, and habitat split; anuran species with different developmental modes respond to habitat disturbance in different ways. This entails broad-scale strategies for conserving biodiversity and advocates for the identification of high conservation-value regions that are significant in a global or continental context and that could underpin more detailed conservation assessments towards such areas. Methodology/Principal Findings: We identified key ecoregion sets for anuran conservation using an algorithm that favors complementarity (beta-diversity) among ecoregions. Using the WWF’s Wildfinder database, which encompasses 700 threatened anuran species in 119 Neotropical ecoregions, we separated species into those with aquatic larvae (AL) or terrestrial development (TD), as this life-history trait affects their response to habitat disturbance. The conservation target of 100 % of species representation was attained with a set of 66 ecoregions. Among these, 30 were classified as priority both for species with AL and TD, 26 were priority exclusively for species with AL, and 10 for species with TD only. Priority ecoregions for both developmental modes are concentrated in the Andes and in Mesoamerica. Ecoregions important for conserving species with AL are widely distributed across the Neotropics. When anuran life histories were ignored, species with AL were always underrepresented in priority sets
The Effects of Governmental Protected Areas and Social Initiatives for Land Protection on the Conservation of Mexican Amphibians
Traditionally, biodiversity conservation gap analyses have been focused on governmental protected areas (PAs). However, an increasing number of social initiatives in conservation (SICs) are promoting a new perspective for analysis. SICs include all of the efforts that society implements to conserve biodiversity, such as land protection, from private reserves to community zoning plans some of which have generated community-protected areas. This is the first attempt to analyze the status of conservation in Latin America when some of these social initiatives are included. The analyses were focused on amphibians because they are one of the most threatened groups worldwide. Mexico is not an exception, where more than 60% of its amphibians are endemic. We used a niche model approach to map the potential and real geographical distribution (extracting the transformed areas) of the endemic amphibians. Based on remnant distribution, all the species have suffered some degree of loss, but 36 species have lost more than 50% of their potential distribution. For 50 micro-endemic species we could not model their potential distribution range due to the small number of records per species, therefore the analyses were performed using these records directly. We then evaluated the efficiency of the existing set of governmental protected areas and established the contribution of social initiatives (private and community) for land protection for amphibian conservation. We found that most of the species have some proportion of their potential ecological niche distribution protected, but 20% are not protected at all within governmental PAs. 73% of endemic and 26% of micro-endemic amphibians are represented within SICs. However, 30 micro-endemic species are not represented within either governmental PAs or SICs. This study shows how the role of land conservation through social initiatives is therefore becoming a crucial element for an important number of species not protected by governmental PAs
Biological traits of European pond macroinvertebrates
Whilst biological traits of river macroinvertebrates show unimodal responses to geographic changes in habitat conditions in Europe, we still do not know whether spatial turnover of species result in distinct combinations of biological traits for pond macroinvertebrates. Here, we used data on the occurrence of 204 macroinvertebrate taxa in 120 ponds from four biogeographic regions of Europe, to compare their biological traits. The Mediterranean, Atlantic, Alpine, and Continental regions have specific climate, vegetation and geology. Only two taxa were exclusively found in the Alpine and Continental regions, while 28 and 34 taxa were exclusively recorded in the Atlantic and Mediterranean regions, respectively. Invertebrates in the Mediterranean region allocated much energy to reproduction and resistance forms. Most Mediterranean invertebrate species had narrow thermal ranges. In Continental areas, invertebrates allocated lesser energy to reproduction and dispersal, and organisms were short lived with high diversity of feeding groups. These characteristics suggest higher resilience. The main difference between ponds in the Alpine and Atlantic regions was their elevation. Alpine conditions necessitate specific adaptations related to rapid temperature fluctuations, and low nutrient concentrations. Even if our samples did not cover the full range of pond conditions across Europe, our analyses suggest that changes in community composition have important impacts on pond ecosystem functions. Consistent information on a larger set of ponds across Europe would be much needed, but their low accessibility (unpublished data and/or not disclosed by authors) remains problematic. There is still, therefore, a pressing need for the incorporation of high quality data sets into a standardized database so that they can be further analyzed in an integrated European-wide manner
Thresholds of riparian forest use by terrestrial mammals in a fragmented Amazonian deforestation frontier
Species persistence in fragmented landscapes is intimately related to the quality, structure, and context of remaining habitat remnants. Riparian vegetation is legally protected within private landholdings in Brazil, so we quantitatively assessed occupancy patterns of terrestrial mammals in these remnants, examining under which circumstances different species effectively use them. We selected 38 riparian forest patches and five comparable riparian sites within continuous forest, at which we installed four to five camera-traps per site (199 camera-trap stations). Terrestrial mammal assemblages were sampled for 60 days per station during the dry seasons of 2013 and 2014. We modelled species occupancy and detection probabilities within riparian forest remnants, and examined the effects of patch size, habitat quality, and landscape structure on occupancy probabilities. We then scaled-up modelled occupancies to all 1915 riparian patches throughout the study region to identify which remnants retain the greatest potential to work as habitat for terrestrial vertebrates. Of the ten species for which occupancy was modelled, six responded to forest quality (remnant degradation, cattle intrusion, palm aggregations, and understorey density) or structure (remnant width, isolation, length, and area of the patch from which it originates). Patch suitability was lower considering habitat quality than landscape structure, and virtually all riparian remnants were unsuitable to maintain a high occupancy probability for all species that responded to forest patch quality or structure. Beyond safeguarding legal compliance concerning riparian remnant amount, ensuring terrestrial vertebrate persistence in fragmented landscapes will require curbing the drivers of forest degradation within private landholdings
Visual Genome-Wide RNAi Screening to Identify Human Host Factors Required for Trypanosoma cruzi Infection
The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical infection that affects millions of people in the Americas. Current chemotherapy relies on only two drugs that have limited efficacy and considerable side effects. Therefore, the development of new and more effective drugs is of paramount importance. Although some host cellular factors that play a role in T. cruzi infection have been uncovered, the molecular requirements for intracellular parasite growth and persistence are still not well understood. To further study these host-parasite interactions and identify human host factors required for T. cruzi infection, we performed a genome-wide RNAi screen using cellular microarrays of a printed siRNA library that spanned the whole human genome. The screening was reproduced 6 times and a customized algorithm was used to select as hits those genes whose silencing visually impaired parasite infection. The 162 strongest hits were subjected to a secondary screening and subsequently validated in two different cell lines. Among the fourteen hits confirmed, we recognized some cellular membrane proteins that might function as cell receptors for parasite entry and others that may be related to calcium release triggered by parasites during cell invasion. In addition, two of the hits are related to the TGF-beta signaling pathway, whose inhibition is already known to diminish levels of T. cruzi infection. This study represents a significant step toward unveiling the key molecular requirements for host cell invasion and revealing new potential targets for antiparasitic therapy
Understory Bird Communities in Amazonian Rainforest Fragments: Species Turnover through 25 Years Post-Isolation in Recovering Landscapes
Inferences about species loss following habitat conversion are typically drawn from short-term surveys, which cannot reconstruct long-term temporal dynamics of extinction and colonization. A long-term view can be critical, however, to determine the stability of communities within fragments. Likewise, landscape dynamics must be considered, as second growth structure and overall forest cover contribute to processes in fragments. Here we examine bird communities in 11 Amazonian rainforest fragments of 1–100 ha, beginning before the fragments were isolated in the 1980s, and continuing through 2007. Using a method that accounts for imperfect detection, we estimated extinction and colonization based on standardized mist-net surveys within discreet time intervals (1–2 preisolation samples and 4–5 post-isolation samples). Between preisolation and 2007, all fragments lost species in an area-dependent fashion, with loss of as few as <10% of preisolation species from 100-ha fragments, but up to 70% in 1-ha fragments. Analysis of individual time intervals revealed that the 2007 result was not due to gradual species loss beginning at isolation; both extinction and colonization occurred in every time interval. In the last two samples, 2000 and 2007, extinction and colonization were approximately balanced. Further, 97 of 101 species netted before isolation were detected in at least one fragment in 2007. Although a small subset of species is extremely vulnerable to fragmentation, and predictably goes extinct in fragments, developing second growth in the matrix around fragments encourages recolonization in our landscapes. Species richness in these fragments now reflects local turnover, not long-term attrition of species. We expect that similar processes could be operating in other fragmented systems that show unexpectedly low extinction
Consequences of a large-scale fragmentation experiment for Neotropical bats : disentangling the relative importance of local and landscape-scale effects
Context
Habitat loss, fragmentation and degradation are widespread drivers of biodiversity decline. Understanding how habitat quality interacts with landscape context, and how they jointly affect species in human-modified landscapes, is of great importance for informing conservation and management.
Objectives
We used a whole-ecosystem manipulation experiment in the Brazilian Amazon to investigate the relative roles of local and landscape attributes in affecting bat assemblages at an interior-edge-matrix disturbance gradient.
Methods
We surveyed bats in 39 sites, comprising continuous forest (CF), fragments, forest edges and intervening secondary regrowth. For each site, we assessed vegetation structure (local-scale variable) and, for five focal scales, quantified habitat amount and four landscape configuration metrics.
Results
Smaller fragments, edges and regrowth sites had fewer species and higher levels of dominance than CF. Regardless of the landscape scale analysed, species richness and evenness were mostly related to the amount of forest cover. Vegetation structure and configurational metrics were important predictors of abundance, whereby the magnitude and direction of response to configurational metrics were scale-dependent. Responses were ensemble-specific with local-scale vegetation structure being more important for frugivorous than for gleaning animalivorous bats.
Conclusions
Our study indicates that scale-sensitive measures of landscape structure are needed for a more comprehensive understanding of the effects of fragmentation on tropical biota. Although forest fragments and regrowth habitats can be of conservation significance for tropical bats our results further emphasize that primary forest is of irreplaceable value, underlining that their conservation can only be achieved by the preservation of large expanses of pristine habitat
- …