70 research outputs found
The entropy of black holes: a primer
After recalling the definition of black holes, and reviewing their energetics
and their classical thermodynamics, one expounds the conjecture of Bekenstein,
attributing an entropy to black holes, and the calculation by Hawking of the
semi-classical radiation spectrum of a black hole, involving a thermal
(Planckian) factor. One then discusses the attempts to interpret the black-hole
entropy as the logarithm of the number of quantum micro-states of a macroscopic
black hole, with particular emphasis on results obtained within string theory.
After mentioning the (technically cleaner, but conceptually more intricate)
case of supersymmetric (BPS) black holes and the corresponding counting of the
degeneracy of Dirichlet-brane systems, one discusses in some detail the
``correspondence'' between massive string states and non-supersymmetric
Schwarzschild black holes.Comment: 51 pages, 4 figures, talk given at the "Poincare seminar" (Paris, 6
December 2003), to appear in Poincare Seminar 2003 (Birkhauser
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
Workplace-based assessment: effects of rater expertise
Traditional psychometric approaches towards assessment tend to focus exclusively on quantitative properties of assessment outcomes. This may limit more meaningful educational approaches towards workplace-based assessment (WBA). Cognition-based models of WBA argue that assessment outcomes are determined by cognitive processes by raters which are very similar to reasoning, judgment and decision making in professional domains such as medicine. The present study explores cognitive processes that underlie judgment and decision making by raters when observing performance in the clinical workplace. It specifically focuses on how differences in rating experience influence information processing by raters. Verbal protocol analysis was used to investigate how experienced and non-experienced raters select and use observational data to arrive at judgments and decisions about trainees’ performance in the clinical workplace. Differences between experienced and non-experienced raters were assessed with respect to time spent on information analysis and representation of trainee performance; performance scores; and information processing––using qualitative-based quantitative analysis of verbal data. Results showed expert-novice differences in time needed for representation of trainee performance, depending on complexity of the rating task. Experts paid more attention to situation-specific cues in the assessment context and they generated (significantly) more interpretations and fewer literal descriptions of observed behaviors. There were no significant differences in rating scores. Overall, our findings seemed to be consistent with other findings on expertise research, supporting theories underlying cognition-based models of assessment in the clinical workplace. Implications for WBA are discussed
Use of nested polymerase chain reaction (PCR) for detection of retroviruses from formalin-fixed, paraffin-embedded uveal melanomas in cats
Evolution of scaling emergence in large-scale spatial epidemic spreading
Background: Zipf's law and Heaps' law are two representatives of the scaling
concepts, which play a significant role in the study of complexity science. The
coexistence of the Zipf's law and the Heaps' law motivates different
understandings on the dependence between these two scalings, which is still
hardly been clarified.
Methodology/Principal Findings: In this article, we observe an evolution
process of the scalings: the Zipf's law and the Heaps' law are naturally shaped
to coexist at the initial time, while the crossover comes with the emergence of
their inconsistency at the larger time before reaching a stable state, where
the Heaps' law still exists with the disappearance of strict Zipf's law. Such
findings are illustrated with a scenario of large-scale spatial epidemic
spreading, and the empirical results of pandemic disease support a universal
analysis of the relation between the two laws regardless of the biological
details of disease. Employing the United States(U.S.) domestic air
transportation and demographic data to construct a metapopulation model for
simulating the pandemic spread at the U.S. country level, we uncover that the
broad heterogeneity of the infrastructure plays a key role in the evolution of
scaling emergence.
Conclusions/Significance: The analyses of large-scale spatial epidemic
spreading help understand the temporal evolution of scalings, indicating the
coexistence of the Zipf's law and the Heaps' law depends on the collective
dynamics of epidemic processes, and the heterogeneity of epidemic spread
indicates the significance of performing targeted containment strategies at the
early time of a pandemic disease.Comment: 24pages, 7figures, accepted by PLoS ON
A case–control study of sporadic retinoblastoma in relation to maternal health conditions and reproductive factors: a report from the Children’s Oncology group
Trouble at the next level: Effects of differential leader–member exchange on group-level processes and justice climate
- …
