697 research outputs found

    Augmenting Consciousness through Invasive Technologies: How Do Cochlear Implant Patients Engage Activity in the World?

    Get PDF
    poster abstractBackground: Our ability to understand the mind has focused primarily on the explanation of behavior, leaving the question of conscious experience untouched and quite enigmatic [1]. The psychology of consciousness pertains to functional notions of the inner state of being and intrinsic internal governing structures such as self-inwardness, self-awareness, attention, voluntary control, knowledge, etc [2]. Vygotsky stated that the: “social dimension of consciousness is primarily in time and in fact,” where “individual consciousness is derivative and secondary” [3]. He held to the philosophical grounding of the theory of activity [4], arguing that to adequately understand the individual, one must recognize the societal implications related to individual lives and their conscious engagement with the social world. Based on his “cultural-historical activity theory” (CHAT), he posited that cognitive operations are specifically sociocultural structures and processes [5] that incorporate cultural artifacts into activity or the cultural mediation of action. As such, CHAT can be used to observe the socially embodied self [6, 7], where consciousness is augmented by fusing minds and tools or technologies, what Dourish stated as embodied experiences of what we “see and understand” [8]. Within this sociocultural model, consciousness can be mediated through invasive technologies. For example, human-machine augmentation (HMA) exists in corrective medical procedures that implant technologies that restore, enhance, or correct the human function of hearing, vision, or cognition. In each case, these enhancements have the potential to make our lives better, while also being augmented and increasingly artificial. Problem: Surgically inserted into the inner ear, cochlear implants provide access to sound to the deaf by stimulating nerve fibers through auditory information received from the external world [9]. Studies have shown that after six months of implantation, children have a significant enhancement in mental shifting aptitude, picture vocabulary capability, working memory, and psychomotor speed [10]. While children with cochlear implants appreciate the opportunities afforded them through the implants, they still seem to suffer from social difficulties involving friendship and “fitting in” especially during adolescence. In some instances, studies have shown that adolescents with cochlear implants began to feel alienated and depressed because they perceive themselves as different from their peers [11]. Adult patients also experienced feelings of estrangement after implantation. One phenomenological study of a 50-year-old deaf woman (after a cochlear implantation) suggested that her embodied world experience of consciousness became distorted, while manifesting signs of paranoia, fear, anxiety, and danger [12]. Due to increasing use of augmenting technologies (such as cochlear implants), we argue that consciousness is being transformed by means of extending bodies and minds [13, 14]. We also hold that the blurring of the boundaries between natural consciousness and artificial systems is an evolutionary transition from mere humancomputer interaction to HMA. As such, we ask, if, and to what degree are invasive technologies changing self-awareness and the inner life of consciousness in the context of human activity? Are augmenting technologies positively impacting the evolution of consciousness and enhancing the sociocultural experience of implant recipients? Methods: Participants will include 30 adults between the ages of 18 and 50: 15 with cochlear implants and 15 without. The study will involve three methods of data collection: (1) A controlled in-lab study will include virtual 3D animated scenes in a CAVE, ranging from a calm natural environment with progressive degrees of complex change in the images and sounds, (2) A one-week observation using the Experience Sampling Method (7x per day cognitive/emotional logging), and (3) Post-test face-to-face interviews and questionnaire. We will also compare participants using physiological bio-sensory tracking during all three methods, including: heart rate (cardiac trends), galvanic skin response (moisture/electrical conductivity, skin temperature (body temp patterns), and heat flux (heat dissipation). Data analysis will help to determine patterns and correlations between cognitive activity, consciousness of surrounding (persons, things, and context) and physiological bio-readings. Broader Impact: The last two decades have seen the exponential emergence of mediational change in human consciousness due to the ubiquitous use of information technology. The intertwining nature of technology is profoundly influencing our relationship to the world. We argue that the synthesis of mind with technology (as psychological tool) is facilitating a different construction of consciousness: a product of an artificially assimilated system that convergences natural and artificial bodies and minds. This study hopes to identify significant differences in the affects of invasive technology on consciousness between users and non-users of cochlear implants

    Assessing the psychometric and ecometric properties of neighborhood scales using adolescent survey data from urban and rural Scotland

    Get PDF
    This work was supported by NHS Health Scotland and the University of St Andrews.Background:  Despite the well-established need for specific measurement instruments to examine the relationship between neighborhood conditions and adolescent well-being outcomes, few studies have developed scales to measure features of the neighborhoods in which adolescents reside. Moreover, measures of neighborhood features may be operationalised differently by adolescents living in different levels of urban/rurality. This has not been addressed in previous studies. The objectives of this study were to: 1) establish instruments to measure adolescent neighborhood features at both the individual and neighborhood level, 2) assess their psychometric and ecometric properties, 3) test for invariance by urban/rurality, and 4) generate neighborhood level scores for use in further analysis. Methods:  Data were from the Scottish 2010 Health Behaviour in School-aged Children Survey, which included an over-sample of rural adolescents. The survey responses of interest came from questions designed to capture different facets of the local area in which each respondent resided. Intermediate data zones were used as proxies for neighborhoods. Internal consistency was evaluated by Cronbach’s alpha. Invariance was examined using confirmatory factor analysis. Multilevel models were used to estimate ecometric properties and generate neighborhood scores. Results:  Two constructs labeled neighborhood social cohesion and neighborhood disorder were identified. Adjustment was made to the originally specified model to improve model fit and measures of invariance. At the individual level, reliability was .760 for social cohesion and .765 for disorder, and between .524 and .571 for both constructs at the neighborhood level. Individuals in rural areas experienced greater neighborhood social cohesion and lower levels of neighborhood disorder compared with those in urban areas. Conclusions:  The scales are appropriate for measuring neighborhood characteristics experienced by adolescents across urban and rural Scotland, and can be used in future studies of neighborhoods and health. However, trade-offs between neighborhood sample size and reliability must be considered.Publisher PDFPeer reviewe

    Wheat-barley hybridization – the last forty years

    Get PDF
    Abstract Several useful alien gene transfers have been reported from related species into wheat (Triticum aestivum), but very few publications have dealt with the development of wheat/barley (Hordeum vulgare) introgression lines. An overview is given here of wheat 9 barley hybridization over the last forty years, including the development of wheat 9 barley hybrids, and of addition and translocation lines with various barley cultivars. A short summary is also given of the wheat 9 barley hybrids produced with other Hordeum species. The meiotic pairing behaviour of wheat 9 barley hybrids is presented, with special regard to the detection of wheat– barley homoeologous pairing using the molecular cytogenetic technique GISH. The effect of in vitro multiplication on the genome composition of intergeneric hybrids is discussed, and the production and characterization of the latest wheat/barley translocation lines are presented. An overview of the agronomical traits (b-glucan content, earliness, salt tolerance, sprouting resistance, etc.) of the newly developed introgression lines is given. The exploitation and possible use of wheat/barley introgression lines for the most up-to-date molecular genetic studies (transcriptome analysis, sequencing of flow-sorted chromosomes) are also discussed

    Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target

    Get PDF
    111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA

    A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande

    Get PDF
    Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of CPCP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW ×\times 107^7 sec integrated proton beam power (corresponding to 1.56×10221.56\times10^{22} protons on target with a 30 GeV proton beam) to a 2.52.5-degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the CPCP phase δCP\delta_{CP} can be determined to better than 19 degrees for all possible values of δCP\delta_{CP}, and CPCP violation can be established with a statistical significance of more than 3σ3\,\sigma (5σ5\,\sigma) for 7676% (5858%) of the δCP\delta_{CP} parameter space

    Measurement of the electron neutrino charged-current interaction rate on water with the T2K ND280 pi(0) detector

    Get PDF
    10 pages, 6 figures, Submitted to PRDhttp://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.112010© 2015 American Physical Society11 pages, 6 figures, as accepted to PRD11 pages, 6 figures, as accepted to PRD11 pages, 6 figures, as accepted to PR

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Computing Power and Sample Size for Case-Control Association Studies with Copy Number Polymorphism: Application of Mixture-Based Likelihood Ratio Test

    Get PDF
    Recent studies suggest that copy number polymorphisms (CNPs) may play an important role in disease susceptibility and onset. Currently, the detection of CNPs mainly depends on microarray technology. For case-control studies, conventionally, subjects are assigned to a specific CNP category based on the continuous quantitative measure produced by microarray experiments, and cases and controls are then compared using a chi-square test of independence. The purpose of this work is to specify the likelihood ratio test statistic (LRTS) for case-control sampling design based on the underlying continuous quantitative measurement, and to assess its power and relative efficiency (as compared to the chi-square test of independence on CNP counts). The sample size and power formulas of both methods are given. For the latter, the CNPs are classified using the Bayesian classification rule. The LRTS is more powerful than this chi-square test for the alternatives considered, especially alternatives in which the at-risk CNP categories have low frequencies. An example of the application of the LRTS is given for a comparison of CNP distributions in individuals of Caucasian or Taiwanese ethnicity, where the LRTS appears to be more powerful than the chi-square test, possibly due to misclassification of the most common CNP category into a less common category

    Search for the standard model Higgs boson at LEP

    Get PDF
    corecore