26 research outputs found
On the Globular Cluster IMF below 1 Solar Mass
(Abridged) Accurate luminosity functions (LF) for a dozen globular clusters
have now been measured at or just beyond their half-light radius using HST.
They span almost the entire cluster main sequence below ~ 0.75 Msolar. All
these clusters exhibit LF that rise continuously from an absolute I magnitude
M_I ~ 6 to a peak at M_I ~ 8.5-9 and then drop with increasing M_I.
Transformation of the LF into mass functions (MF) by means of the most recent
mass luminosity relations that are consistent with all presently available data
on the physical properties of low mass, low metallicity stars shows that all
the LF observed so far can be obtained from MF having the shape of a log-normal
distribution with characteristic mass m_c=0.33 +/- 0.03 Msolar and standard
deviation sigma = 1.81 +/- 0.19. After correction for the effects of mass
segregation, the variation of the ratio of the number of higher to lower mass
stars with cluster mass or any simple orbital parameter or the expected time to
disruption recently computed for these clusters shows no statistically
significant trend over a range of this last parameter of more than a factor of
100. We conclude that the global MF of these clusters have not been measurably
modified by evaporation and tidal interactions with the Galaxy and, thus,
should reflect the initial distribution of stellar masses. Since the log-normal
function that we find is also very similar to the one obtained independently
for much younger clusters and to the form expected theoretically, the
implication seems to be unavoidable that it represents the true stellar IMF for
this type of stars in this mass range.Comment: Accepted for publication in The Astrophysical Journal. Contains 28
pages with 6 figure
Dwarf Galaxies of the Local Group
The Local Group (LG) dwarf galaxies offer a unique window to the detailed
properties of the most common type of galaxy in the Universe. In this review, I
update the census of LG dwarfs based on the most recent distance and radial
velocity determinations. I then discuss the detailed properties of this sample,
including (a) the integrated photometric parameters and optical structures of
these galaxies, (b) the content, nature and distribution of their ISM, (c)
their heavy-element abundances derived from both stars and nebulae, (d) the
complex and varied star-formation histories of these dwarfs, (e) their internal
kinematics, stressing the relevance of these galaxies to the dark-matter
problem and to alternative interpretations, and (f) evidence for past, ongoing
and future interactions of these dwarfs with other galaxies in the Local Group
and beyond. To complement the discussion and to serve as a foundation for
future work, I present an extensive set of basic observational data in tables
that summarize much of what we know, and what we still do not know, about these
nearby dwarfs. Our understanding of these galaxies has grown impressively in
the past decade, but fundamental puzzles remain that will keep the Local Group
at the forefront of galaxy evolution studies for some time.Comment: 66 pages; 9 figures; 8 table
A pair of tess planets spanning the radius valley around the nearby mid-m dwarf ltt 3780
We present the confirmation of two new planets transiting the nearby mid-M
dwarf LTT 3780 (TIC 36724087, TOI-732, , , =0.374 R, =0.401 M, d=22 pc). The two planet candidates are identified in a single TESS sector and are validated with reconnaissance spectroscopy, ground-based photometric follow-up, and high-resolution imaging. With measured orbital periods of days, days and sizes R, R, the two planets span the radius valley in period-radius space around low mass stars thus making the system a laboratory to test competing theories of the emergence of the radius valley in that stellar mass regime. By combining 63 precise radial-velocity measurements from HARPS and HARPS-N, we measure planet masses
of M and M, which indicates that LTT 3780b has a bulk composition consistent with being Earth-like, while LTT 3780c likely hosts an extended H/He envelope.
We show that the recovered planetary masses are consistent with predictions from both photoevaporation and from core-powered mass loss models. The brightness and small size of LTT 3780, along with the measured planetary parameters, render LTT 3780b and c as accessible targets for atmospheric characterization of planets within the same planetary system and spanning the radius valley
Relativistic Binaries in Globular Clusters
Galactic globular clusters are old, dense star systems typically containing
10\super{4}--10\super{7} stars. As an old population of stars, globular
clusters contain many collapsed and degenerate objects. As a dense population
of stars, globular clusters are the scene of many interesting close dynamical
interactions between stars. These dynamical interactions can alter the
evolution of individual stars and can produce tight binary systems containing
one or two compact objects. In this review, we discuss theoretical models of
globular cluster evolution and binary evolution, techniques for simulating this
evolution that leads to relativistic binaries, and current and possible future
observational evidence for this population. Our discussion of globular cluster
evolution will focus on the processes that boost the production of hard binary
systems and the subsequent interaction of these binaries that can alter the
properties of both bodies and can lead to exotic objects. Direct {\it N}-body
integrations and Fokker--Planck simulations of the evolution of globular
clusters that incorporate tidal interactions and lead to predictions of
relativistic binary populations are also discussed. We discuss the current
observational evidence for cataclysmic variables, millisecond pulsars, and
low-mass X-ray binaries as well as possible future detection of relativistic
binaries with gravitational radiation.Comment: 88 pages, 13 figures. Submitted update of Living Reviews articl
Low-mass and sub-stellar eclipsing binaries in stellar clusters
We highlight the importance of eclipsing double-line binaries in our
understanding on star formation and evolution. We review the recent discoveries
of low-mass and sub-stellar eclipsing binaries belonging to star-forming
regions, open clusters, and globular clusters identified by ground-based
surveys and space missions with high-resolution spectroscopic follow-up. These
discoveries provide benchmark systems with known distances, metallicities, and
ages to calibrate masses and radii predicted by state-of-the-art evolutionary
models to a few percent. We report their density and discuss current
limitations on the accuracy of the physical parameters. We discuss future
opportunities and highlight future guidelines to fill gaps in age and
metallicity to improve further our knowledge of low-mass stars and brown
dwarfs.Comment: 30 pages, 5 figures, no table. Review pape
The PLATO 2.0 mission
PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4-16 mag). It focusses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science
Recommended from our members
A pair of tess planets spanning the radius valley around the nearby mid-m dwarf ltt 3780
We present the confirmation of two new planets transiting the nearby mid-M
dwarf LTT 3780 (TIC 36724087, TOI-732, , , =0.374 R, =0.401 M, d=22 pc). The two planet candidates are identified in a single TESS sector and are validated with reconnaissance spectroscopy, ground-based photometric follow-up, and high-resolution imaging. With measured orbital periods of days, days and sizes R, R, the two planets span the radius valley in period-radius space around low mass stars thus making the system a laboratory to test competing theories of the emergence of the radius valley in that stellar mass regime. By combining 63 precise radial-velocity measurements from HARPS and HARPS-N, we measure planet masses
of M and M, which indicates that LTT 3780b has a bulk composition consistent with being Earth-like, while LTT 3780c likely hosts an extended H/He envelope.
We show that the recovered planetary masses are consistent with predictions from both photoevaporation and from core-powered mass loss models. The brightness and small size of LTT 3780, along with the measured planetary parameters, render LTT 3780b and c as accessible targets for atmospheric characterization of planets within the same planetary system and spanning the radius valley
