43 research outputs found

    Investigation of the midgut structure and ultrastructure in Cimex lectularius and Cimex pipistrelli (Hemiptera, Cimicidae)

    Get PDF
    Cimicidae are temporary ectoparasites, which means that they cannot obtain food continuously. Both Cimex species examined here, Cimex lectularius (Linnaeus 1758) and Cimex pipistrelli (Jenyns 1839), can feed on a non-natal host, C. lectularius from humans on bats, C. pipistrelli on humans, but never naturally. The midgut of C. lectularius and C. pipistrelli is composed of three distinct regions—the anterior midgut (AMG), which has a sack-like shape, the long tube-shaped middle midgut (MMG), and the posterior midgut (PMG). The different ultrastructures of the AMG, MMG, and PMG in both of the species examined suggest that these regions must fulfill different functions in the digestive system. Ultrastructural analysis showed that the AMG fulfills the role of storing food and synthesizing and secreting enzymes, while the MMG is the main organ for the synthesis of enzymes, secretion, and the storage of the reserve material. Additionally, both regions, the AMG and MMG, are involved in water absorption in the digestive system of both Cimex species. The PMG is the part of the midgut in which spherites accumulate. The results of our studies confirm the suggestion of former authors that the structure of the digestive tract of insects is not attributed solely to diet but to the basic adaptation of an ancestor

    Wolbachia-Mediated Male Killing Is Associated with Defective Chromatin Remodeling

    Get PDF
    Male killing, induced by different bacterial taxa of maternally inherited microorganisms, resulting in highly distorted female-biased sex-ratios, is a common phenomenon among arthropods. Some strains of the endosymbiont bacteria Wolbachia have been shown to induce this phenotype in particular insect hosts. High altitude populations of Drosophila bifasciata infected with Wolbachia show selective male killing during embryonic development. However, since this was first reported, circa 60 years ago, the interaction between Wolbachia and its host has remained unclear. Herein we show that D. bifasciata male embryos display defective chromatin remodeling, improper chromatid segregation and chromosome bridging, as well as abnormal mitotic spindles and gradual loss of their centrosomes. These defects occur at different times in the early development of male embryos leading to death during early nuclear division cycles or large defective areas of the cellular blastoderm, culminating in abnormal embryos that die before eclosion. We propose that Wolbachia affects the development of male embryos by specifically targeting male chromatin remodeling and thus disturbing mitotic spindle assembly and chromosome behavior. These are the first observations that demonstrate fundamental aspects of the cytological mechanism of male killing and represent a solid base for further molecular studies of this phenomenon

    The influence of mosquito resting behaviour and associated microclimate for malaria risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The majority of the mosquito and parasite life-history traits that combine to determine malaria transmission intensity are temperature sensitive. In most cases, the process-based models used to estimate malaria risk and inform control and prevention strategies utilize measures of mean outdoor temperature. Evidence suggests, however, that certain malaria vectors can spend large parts of their adult life resting indoors.</p> <p>Presentation of hypothesis</p> <p>If significant proportions of mosquitoes are resting indoors and indoor conditions differ markedly from ambient conditions, simple use of outdoor temperatures will not provide reliable estimates of malaria transmission intensity. To date, few studies have quantified the differential effects of indoor <it>vs </it>outdoor temperatures explicitly, reflecting a lack of proper understanding of mosquito resting behaviour and associated microclimate.</p> <p>Testing the hypothesis</p> <p>Published records from 8 village sites in East Africa revealed temperatures to be warmer indoors than outdoors and to generally show less daily variation. Exploring the effects of these temperatures on malaria parasite development rate suggested indoor-resting mosquitoes could transmit malaria between 0.3 and 22.5 days earlier than outdoor-resting mosquitoes. These differences translate to increases in transmission risk ranging from 5 to approaching 3,000%, relative to predictions based on outdoor temperatures. The pattern appears robust for low- and highland areas, with differences increasing with altitude.</p> <p>Implications of the hypothesis</p> <p>Differences in indoor <it>vs </it>outdoor environments lead to large differences in the limits and the intensity of malaria transmission. This finding highlights a need to better understand mosquito resting behaviour and the associated microclimate, and to broaden assessments of transmission ecology and risk to consider the potentially important role of endophily.</p

    The PLATO 2.0 mission

    Get PDF
    PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4-16 mag). It focusses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science
    corecore