602 research outputs found

    Spawning rings of exceptional points out of Dirac cones

    Get PDF
    The Dirac cone underlies many unique electronic properties of graphene and topological insulators, and its band structure--two conical bands touching at a single point--has also been realized for photons in waveguide arrays, atoms in optical lattices, and through accidental degeneracy. Deformations of the Dirac cone often reveal intriguing properties; an example is the quantum Hall effect, where a constant magnetic field breaks the Dirac cone into isolated Landau levels. A seemingly unrelated phenomenon is the exceptional point, also known as the parity-time symmetry breaking point, where two resonances coincide in both their positions and widths. Exceptional points lead to counter-intuitive phenomena such as loss-induced transparency, unidirectional transmission or reflection, and lasers with reversed pump dependence or single-mode operation. These two fields of research are in fact connected: here we discover the ability of a Dirac cone to evolve into a ring of exceptional points, which we call an "exceptional ring." We experimentally demonstrate this concept in a photonic crystal slab. Angle-resolved reflection measurements of the photonic crystal slab reveal that the peaks of reflectivity follow the conical band structure of a Dirac cone from accidental degeneracy, whereas the complex eigenvalues of the system are deformed into a two-dimensional flat band enclosed by an exceptional ring. This deformation arises from the dissimilar radiation rates of dipole and quadrupole resonances, which play a role analogous to the loss and gain in parity-time symmetric systems. Our results indicate that the radiation that exists in any open system can fundamentally alter its physical properties in ways previously expected only in the presence of material loss and gain

    Solitary waves in the Nonlinear Dirac Equation

    Get PDF
    In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger equation. A few special topics are also explored, including the discrete variant of the nonlinear Dirac equation and its solitary wave properties, as well as the PT-symmetric variant of the model

    A Framework for Verifying Data-Centric Protocols

    Get PDF
    International audienceData centric languages, such as recursive rule based languages, have been proposed to program distributed applications over networks. They simplify greatly the code, while still admitting efficient distributed execution. We show that they also provide a promising approach to the verification of distributed protocols, thanks to their data centric orientation, which allows us to explicitly handle global structures such as the topology of the network. We consider a framework using an original formalization in the Coq proof assistant of a distributed computation model based on message passing with either synchronous or asynchronous behavior. The declarative rules of the Netlog language for specifying distributed protocols and the virtual machines for evaluating these rules are encoded in Coq as well. We consider as a case study tree protocols, and show how this framework enables us to formally verify them in both the asynchronous and synchronous setting

    A versatile all-optical parity-time signal processing device using a Bragg grating induced using positive and negative Kerr-nonlinearity

    Get PDF
    The properties of gratings with Kerr nonlinearity and PT symmetry are investigated in this paper. The impact of the gain and loss saturation on the response of the grating is analysed for different input intensities and gain/loss parameters. Potential applications of these gratings as switches, logic gates and amplifiers are also shown

    Evidence for the η_b(1S) Meson in Radiative Υ(2S) Decay

    Get PDF
    We have performed a search for the η_b(1S) meson in the radiative decay of the Υ(2S) resonance using a sample of 91.6 × 10^6 Υ(2S) events recorded with the BABAR detector at the PEP-II B factory at the SLAC National Accelerator Laboratory. We observe a peak in the photon energy spectrum at E_γ = 609.3^(+4.6)_(-4.5)(stat)±1.9(syst) MeV, corresponding to an η_b(1S) mass of 9394.2^(+4.8)_(-4.9)(stat) ± 2.0(syst) MeV/c^2. The branching fraction for the decay Υ(2S) → γη_b(1S) is determined to be [3.9 ± 1.1(stat)^(+1.1)_(-0.9)(syst)] × 10^(-4). We find the ratio of branching fractions B[Υ(2S) → γη_b(1S)]/B[Υ(3S) → γη_b(1S)]= 0.82 ± 0.24(stat)^(+0.20)_(-0.19)(syst)

    Non-accretive Schrödinger operators and exponential decay of their eigenfunctions

    Get PDF
    International audienceWe consider non-self-adjoint electromagnetic Schrödinger operators on arbitrary open sets with complex scalar potentials whose real part is not necessarily bounded from below. Under a suitable sufficient condition on the electromagnetic potential, we introduce a Dirichlet realisation as a closed densely defined operator with non-empty resolvent set and show that the eigenfunctions corresponding to discrete eigenvalues satisfy an Agmon-type exponential decay

    Spatial Kramers-Kronig relations and the reflection of waves

    Get PDF
    Copyright © 2015, Rights Managed by Nature Publishing GroupAuthor version of article. The version of record is available from the publisher via DOI: 10.1038/nphoton.2015.106When a planar dielectric medium has a permittivity profile that is an analytic function in the upper or lower half of the complex position plane x=x'+ix'' then the real and imaginary parts of its permittivity are related by the spatial Kramers-Kronig relations. We find that such a medium will not reflect radiation incident from one side, whatever the angle of incidence. Using the spatial Kramers-Kronig relations, one can derive a real part of a permittivity profile from some given imaginary part (or vice versa) such that the reflection is guaranteed to be zero. This result is valid for both scalar and vector wave theories and may have relevance for designing materials that efficiently absorb radiation or for the creation of a new type of anti-reflection surface.Engineering and Physical Sciences Research Council (EPSRC

    PT-Symmetric Dimer in a Generalized Model of Coupled Nonlinear Oscillators

    Get PDF
    Abstract In the present work, we explore the case of a general PT -symmetric dimer in the context of two both linearly and nonlinearly coupled cubic oscillators. To obtain an analytical handle on the system, we first explore the rotating wave approximation converting it into a discrete nonlinear Schrödinger type dimer. In the latter context, the stationary solutions and their stability are identified numerically but also wherever possible analytically. Solutions stemming from both symmetric and anti-symmetric special limits are identified. A number of special cases are explored regarding the ratio of coefficients of nonlinearity between oscillators over the intrinsic one of each oscillator. Finally, the considerations are extended to the original oscillator model, where periodic orbits and their stability are obtained. When the solutions are found to be unstable their dynamics is monitored by means of direct numerical simulations

    Outlook for inverse design in nanophotonics

    Full text link
    Recent advancements in computational inverse design have begun to reshape the landscape of structures and techniques available to nanophotonics. Here, we outline a cross section of key developments at the intersection of these two fields: moving from a recap of foundational results to motivation of emerging applications in nonlinear, topological, near-field and on-chip optics.Comment: 13 pages, 6 figure
    corecore