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In the present work, we explore the case of a gerféfalsymmetric dimer in the context of two both linearly
and nonlinearly coupled cubic oscillators. To obtain anlydital handle on the system, we first explore the
rotating wave approximation converting it into a discredaelinear Schrodinger type dimer. In the latter context,
the stationary solutions and their stability are identifieomerically but also wherever possible analytically.
Solutions stemming from both symmetric and anti-symmesfpiecial limits are identified. A number of special
cases are explored regarding the ratio of coefficients dimearity between oscillators over the intrinsic one of
each oscillator. Finally, the considerations are exteridetie original oscillator model, where periodic orbits
and their stability are obtained. When the solutions ar@dolo be unstable their dynamics is monitored by
means of direct numerical simulations.

I. INTRODUCTION

The notion of parity-time®7) symmetry has recently been receiving increasing atterdi®r a wide variety of settings;
see e.g.[[123]. The original proposal involved a non-Heemitariant of quantum mechanics which might still produeal r
eigenvalues (and hence be associated with measurabletmpsntHowever, it was instead the analogy of this modehwit
the paraxial approximation in optics which led to the pradbat such mathematical constructs can be realized ircalpti
settings[[4] 5], and which eventually led to their experitaérealization([5]. This series of developments, in turrgrppted
researchers towards a more detailed understanding of diersiry states of suc®7-systems (and how they differ from
their Hamiltonian analogues), an effort to appreciatertsibility properties and finally an attempt to quantifyithreonlinear
dynamics. This effort emerged both at the level of few-sitefigurations [7=15] (which were chiefly experimentallyessible),
as well as at that of infinite-size latticés [16-18].

Although the quantum-mechanical and paraxial-opticahf@oints of this activity have provided an emphasis on theyst
of Schrodinger type settings, a number of recent studigseaally on the experimental side, have led to an incremgerkst
in oscillator systems (which one can think of as oligomeesv-6ite settings- of the Klein-Gordon type). More specifical
a mechanical system realizifg7 -symmetry has been proposed lin/[19], while a major thruseséarch has focused on the
context of electronic circuits; see e.g. the original mstibn of [20] and the more recent review of this activity#i]. As an
aside, we note that additional intriguing realization$gf-symmetry have also emerged e.g. in the realm of whispegailgry
microcavities[[22]. Mostly, the efforts on this oscillatealm have been limited to the study of linear systems, yenidy
a number of nonlinear variants have been explored both ¢tieally/numerically and even experimentally. As notasleh
examples, we mention the split-ring resonator chain in thetext of magnetic metamaterials proposed in the work df [28
well as the experimental realization of?a7 -symmetric dimer of Van-der-Pol oscillators that arosehiawork of [24].

On the theoretical side, some of these studies raised a mwhipgriguing theoretical questions. For instance, theottetical
modeling of the linea 7 -symmetric analogue of the system|[22] led to the realiraiimt such linear oscillator pairs may be
Hamiltonianalthoughone of them has gain and the other has loss [25]. This, in kedirthe authors of [26] to appreciate that this
feature (the Hamiltonian nature of7 -symmetric oscillator system) can be extended to the neatinase, if the nonlinearity
contains both self- and cross- interactions between thidlaiscs and if these interactions have an appropriat® r@e ratio
utilized between cross- and self-interactions in that weak3). Importantly, the latter work also extended consideratibthat
model to the Schrodinger variant thereof (through a migtgzales expansion), finding that nonlinearity may, in trwattext,
“soften” the’PT-symmetric phase transition. That is, it may enable thetemee of stable periodic and quasi-periodic states at
any value of the gain-loss parameter

Our aim in the present work is to revisit this context of twaipted nonlinear oscillators, one of which bears gain and the
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other loss. We will consider the nonlinear case (almostuwestetly, briefly touching upon the linear case as a speaiat)li
Importantly, we will also explore the ratio of cross- to silferaction of the oscillators as a free parameter. lstargly, this
will enable us to identify a series of special casesjuding the integrable one recently explored inl[26]. For all valoés
this nonlinear parameter and as a function of the loss/gaiarpeter{) and of the frequency parameter,, we will study
systematicallypothdimer systems. That is, we will first derive and analyze tlsemite nonlinear Schrodinger (DNLS) dimer, to
obtain a simplified understanding of the existence, stgtiind dynamics properties. Then, in a way reminiscent okeaulier
work (involving no cross interactions) [27] —and completirgthe earlier work of [26] who did not focus on the periodibit
solutions of the original nonlinear oscillator dimer—, wélweturn to the oscillator system and explore its own solus, in
terms of their existence, stability and dynamical progsttWhen the solutions are identified as unstable, a briefisison will
also be given of their dynamical evolution.

This paper is organized as follows. In the next section (B)pwovide the model equations, discuss their symmetriepand
tential Hamiltonian structure and indicate where corresfing exact solutions for the generalized coupled nontinsaillators
can be obtained. In Sec. Ill we invoke the rotating wave axpration (RWA) and provide the stability equations and sitical
results as well as perform numerical analysis of both themsgtric and asymmetric solutions for the resulting geneealDNLS
dimer. Section IV contains the corresponding analysis efktein-Gordon dimer. A discussion of the dynamics of unigtab
solutions is given in Sec. V. Our main results and conclusiame summarized in Sec. VI, where a number of directions for
future study are also highlighted. Details of the numerigllysis are relegated to Appendix A.

Il. THE MODEL

As per the above discussion, we consider the system of cdoglgllators given by:

i = —u+kv+ 0+ eu® 4+ Suv?,
= —v+ku— 0+ ev® + dvu?. (1)
This model is an extension of that in [27], which can be olediby takingd = 0. Additionally, it is an extension of the

specific case of = 3¢ considered in[[26]. In the linear limif, = ¢ = 0, there are two branches of solution eigenfrequencies
given by:

wi=\1-72/2£ /-2 171/a ()

with wy (w-) corresponding to symmetric (anti-symmetric) linear n®dey = 0. Here, we proceed with the understanding
that+w4 are of relevance but we will focus our attention on the pesifiequencies hereafter. The two pairs of real (for small
~) eigenfrequencies will collide and give rise to a frequequgrtet fory > vpr 1, whereypr 1, satisfies the condition:

'ngT.,L - 47123T,L +4k* = 0. 3

Thus, for fixedk, the lowest value of p7 1, corresponds ta = v/1 — k2.
Additionally, to this linear analysis, we observe that tlemlimear dynamical equations] (1) possess several syneneirat
leave them invariant:

e U— —U,V— —U,

o u— —u,k— —k,v—uv,

o u—uk— —kv— —v,

ot — —t,y— —.

o u— au,v—av,e—e/at, § —5/a?.

In the limity = 0, (@) is a Hamiltonian system, witH given by
w? 4+ 0% +u? + 02 €

)
_ € N 0.9 9
H= > 4(u +v%) — kuv 2uv, (4)

and, for the casé = 3¢, dynamical equation§l(1) are Hamiltonian for any value {26], with a Hamiltonian of the form:



2
Hy = pupy + %(upu —upy) + (1 — ’Yz)uv - g(u2 +0%) — e(uPv + v3u), (5)

In this casep,, = 0 + yv/2, p, = @ — yu/2.

The aim of this paper is to identify periodic orbits of frequgw;, of the modell(ll) (and to compare them also to the results
of the DNLS approximation). Toward achieving this aim, Feuspace techniques have been utilized in order to expand th
solution in time and to obtain its numerically exact form (o prescribed numerical tolerance). Finally, Floquebtiidas
been used to explore the stability of the pertinent configmma. More details about the numerical methods have beem gn
AppendixXA.

An important diagnostic quantity for probing the dependgoicthe solutions on parameters such as the gain/loss #treng
or the oscillation frequenay,,, is the energy averaged over a period, defined as:

T

cH>==> [ B, (6)
Ty Jo

with the Hamiltonian (of the case without gain/loss) given{#) andT;, = 27 /wy, being the oscillation period.
In what follows, we will restrict to the values @f/e = {1,3/2,3}, for which as will be seen below, the solutions and/or
dynamical equations possess special properties. In additie restrict toy > 0, 0 < k < 1 and|e¢] = 1. Unless stated

otherwisek = 1/15/8 ~ 0.48 has been fixed; this value impliegr ;, = 0.5.

I1l. THE ROTATING WAVE APPROXIMATION
A. TheDNLSdimer: themodel, stability equationsand analytical results

The RWA provides a means of connecting with the extensivedyyzedP 7 -symmetric Schrodinger dimei [8,/10/ 15/ 28-31].
This link follows a path similar to what has been earlier psgd e.g. in[[33, 34]. In particular, the following ansatzéed
to approximate the solution of the periodic orbit problenaasughly monochromatic wavepacket of frequeagy(for ¢, 2 in
what follows we will seek stationary states).

u(t) = ¢1(t) exp(iwpt) + @7 (1) exp(—iwpt), v(t) = ¢2(t) exp(iwpt) + ¢35 (t) exp(—iwpt). (7

By supposing thatz'ﬁn < wpo, and ¢n < wbén (i.e., ¢ varies slowly on the scale of the oscillation of the actuaax
time periodic state), discarding the terms multiplying (+3iwyt), the dynamical equationsl(1) transform into a set of coupled
Schrodinger type equations:

2iwndr = [(WE — 1) + 3e|dn|? + 20|d2|* + iwp )b + [k + 56 da]do,
2iwndy = [(Wi — 1) + 3€|o|® + 28]d1|* — iwp]d2 + [k + Sd3h1]¢1, €)

i.e., forming, under these approximations? @ -symmetric Schrodinger dimer. The stationary solutiohthis dimer can then
be used in order to reconstruct via Eq. A1) the solutiondhefRWA to the originalP7-symmetric oscillator dimer. These
stationary solutions fop, (t) = y1 andgs(t) = 21 satisfy the algebraic conditions

Eyy = (p+qzyi)z + (n* + 2q|z1 )y + iCys,

Ez = (p+aquzDy + (|21 + 2|y [*)z1 — iz, 9)
with
1 — w? k ] Ywh,
E = b . - I =1 10
3¢ ' p 3¢’ q 3¢’ e (10)

Notice that whern; = 1/2, i.e.d/e = 3/2, coupling in Eq.[(B) resembles that in the Manakov madél.[32]
If we express;; andz; in polar form:

y1 = Aexp(ify), 21 = Bexp(ifa), o =0y — 01, (11)



the stationary equations can be rewritten as

EA = pBcos ¢+ qAB? cos 2¢ + A(A? + 2¢B?), (12)
EB = pAcos ¢+ qBA? cos 29 + B(B? + 2qA?), (13)
—I'B = Asin ¢(p + 2¢AB cos v), (14)
—I'A = Bsin p(p + 2¢AB cos ¢). (15)

In the casey = 0, there can be symmetric or anti-symmetric solutions, firl§l A2 = B2. Contrary to thej = 0 setting,
wheresin ¢ = 0 only, here we have, apart from this case, the possibility phase different than O ar, i.e. cos ¢ =
—p/(2¢AB). Consequently, we have two pairs of symmetric / anti-symimeblutions withA = B at the Hamiltonian limit:

2_E—p_l—wg—k

=Ti3¢" 3exd) =0 Sp solution (16)
2 _ f:;; - 13_(;E;F)k, o= Aq solution (17)
£ % _ % o = cos [~200)] = cost [~ H889] 5, soluton (18)
A2 — % _ ;E—:JE’ @ =m+cos ! {%} = +cos! [%ﬁfﬁ)} A, solution (19)

Recall thatA = B in all the previous cases, i.e. the sign of the anti-symmewlutions has been introduced into the phase.
Apart from the previous solutions, there is an asymmettiatem (AS) whose properties strongly dependigia. This solution
is given by:

1 — wb :IZ 4k2e k
o \/ TR gl ey R et () ASsolution (20)
c—

Note that the asymmetric solution exists only i« e. When they are equal it is easily checked from RWA equatibas t
there is no asymmetric solution.

It is easy to show that at = 0 ande > 0, Sy solutions exist fow,, < ws = V1 — k, Ag solutions exist fotw, < wa =
V1 +k and bothS,, and A solutions only exist wheny, < wyy = /1 — k(1 + 3¢/5)/2; for e < 0, Sy solutions exist for
wp > wsg = V1 —k, Ag solutions forw, > wa = +/1+ k and bothS, and A, solutions only exist whem, > wey— =
V/1+k(1+3€¢/8)/2. In addition, asymmetric solutions only exist for, < was+ = /1 + 2k/(1 —d/e) if wy, < 1 and for
Wp > was— = /1 — 2k/(1 —6/6) if wp > 1.

Using the identifications (¢) = y; andgz(t) = 2 introduced after((8), the averaged energy within the RWA&awmritten
as:

< H >=(1+wp)(yil* + |21]*) — 2kRe(y127) — —(|y1|4 +z1]!) = 0[Re(yiz1?) + 2Jy1 * 21 ) (21)

and, by making use of{11), the average energy for each ofréhéqus solutions af = 0 is given by the following expres-
sions:

ws + 2wswb 3wb

<H> = 3(c + 0) , So solution

<H> = Wit 2?2‘*:)‘3) 3wb, Ay solution

<H> = % + l;—;, Ss andA solutions

<H> = 1T 2w, — 3w + L AS solution (22)

Ge 3(0—¢)
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Notice that the average energy of b8thandA , are the same for everyand that also coincide with that of the AS solution for
0 = 3e.

When+ # 0 only symmetric and anti-symmetric solutions can exist ags. E12){(I5) can be simplified as a quartic equation
for A2:

4
> PAY =0 (23)
j=0
with
Py = (I?+ E*)(I* + E* - p%),
Py = 2E[(1+4 q)p® —2(1 +2¢)(T* + E?)],
Py = 4(142¢)?E?* 4+ 2(1 +3¢)(1 + ¢)(I'2 + E?) — (1 + ¢)*p?,

Py = —4E(1+q)(1+2q)(1 + 3q),
Py = (1+3¢)%(1+q),

whereas the phase fulfills the equation:

r

F T qa @)

tan ¢ = —
Just as one could give an expressiondowithout involving ¢, similarly by eliminatingA, one finds that must satisfy the
constraint

Eqsin(2¢) £ p(1 + q)sin(¢) + T[1 + g+ 2gcos®(¢)] =0, B=+A. (25)

Notice that there is a phase degeneracy that must be remg\aaplying, e.g., Eq[(15) together with the previous one.

We now turn to the linear stability of different solutionstiin the RWA. The spectral analysis of the symmetric and-anti
symmetric solutions can be obtained by considering smatueations [of ordelO(¢e), with 0 < ¢ < 1] of the stationary
solutions. The stability can be determined by substitutiig ansatz below intd(8) and then solving the ensuing [te)lO
eigenvalue problem:

p1(t) = y1 +e(are 0T L prelft/Toy
$2(t) = 21 + e(age 0T 4 p3ei07t/Th) 6

with 71, = 27 /wy, being the orbit’s period anél being the Floquet exponent (FE). The FEs can be expressed as:

0= 0 (27)
W,
with Q) being the eigenfrequencies of the stability mafvix which is defined aQ (a1, az, b3, b3)T = M (a1, a2, b3,b3)T. Inthe
case of symmetric and anti-symmetric solutions, the ma#aixbe written as:

M M, M, M,
| w M oM, Mg
M=\ —My, —Mp —M, (28)

~M, —Ms; —My —M,;

with the elements being

My = (wi —1)+2(3e + 0) A% +iwpy, (29)
M, = 45A%cos p + k, (30)
Ms = [3eexp(—ip) + & exp(ip)]A?, (31)
M, = 20A2. (32)

Thus, the non-zero eigenvalugsan be expressed in terms4f andy, which must be determined by solving Eqs.](Z3)}(24):
0?/2 = [6%(1—16 cos® @) —6e5(5—2 cos? @) — 27€*] A* — [8kd cos p—4(wi —1)(3e+6)] A% — [(wi — 1) +k? —y%wi], (33)



B. Numerical analysis of symmetric and anti-symmetric solutions

We show below the properties of thg), So, Ay andS, solutions in the case$ = ¢, 6 = 3¢/2 andd = 3¢ for both soft
(e = +1) and hard{ = —1) potentials. A summary of the existence and stability regis displayed in Fig.]1, where the panels
depict they-wy, planes. Notice that althoughy, So, A4 andS, solutions are, strictly speaking, defined onlyyat 0, we will
use this notation for solutions at# 0 that are obtained by continuation from the Hamiltonianr= 0) limit.

Prior to starting the analysis for arbitraty we will briefly show the properties of the asymmetric sauog aty = 0.
As explained above, we will choose = +/15/8. Notice that for this parameter value3s, < 0if & = 3¢/2 > 0 and
consequently, there is no asymmetric solution for thismegi However, there are asymmetric solutions # 3¢/2 < 0 and
wp > was— = 1.7136. In fact, atw;, = was_ there is a pitchfork bifurcation, as tt¥g solution is unstable far, < was— and
becomes stable past the bifurcation point, where a pairasfdires corresponding to unstable asymmetric solutionsyemieor
0 = 3¢, the situation is similar in the hard case in what regardegigtence of solutions (nowxs_ = wa ~ 1.2182); for the
soft case, the asymmetric solution existsdgr< was+ = ws ~ 0.7182 and bifurcates from thé, solution. Notice that the
Ay (for the soft case) and tts, (for the hard case) are altablg furthermore, the AS solution appears to be marginallylstab
and highly degenerate as all the eigenfrequeri¢iage equal to zero; recall also the special, completely ratdg nature of this
special limit.

We analyze now the properties of theft potential wheny # 0. In thed = ¢ case, there are two main regions: in region
[, only A, solutions exist, aS, solutions bifurcate from the left arm of thg, (wy,) curve (i.e.w. ), which corresponds to the
symmetric linear modes; at the right of region I, no solusiane found becaustk, solutions bifurcate from the right arm (i.e.
w_) of the linear dispersion relation. In this soft case of 0, the bifurcations occur to the left af,(w;, ), whereas in the hard
case of < 0, they arise to the right ofy, (wy). It is easy to show that fronhl(2)y, is given by:

V(K2 = 1) + 2w — wl
Wwh '

YL (wp) = (34)

Consequently, region | is bounded betwegn= ws ~ 0.7182, wy, = wa ~ 1.2182 andy = vypr,; = 0.5. In region Il, both
Ay andS, solutions exist, and experience tR§” phase transition at the curve designatedas(wy, ). Notice also that all the
solutions existing in both regions | and Il are stable. Iniadd, A4 andSy solutions can only be found fan, < w4, but their
existence range is quite small@g, ~ 0.1782 and only exist fory < 0.1.

Foro = 3¢/2, both regions | and Il have the same properties as beforalditian, region 11l is included, which is below the
curvey; (wy). In that region, all four solutions exist and are stable pkéer A. This solution becomes stable only nearby i.e.
between the curveg (wy,) and~; (wy,). This small stability region can be observed between redgaeen curves of the inset
of the corresponding panel (notice that this phenomenoralgasobserved in thé = ¢ case, but was not showcased due to the
very small range of existence 8§ andA solutions therein). In region Il only two solutions existy for, < w4 ~ 0.5233, i.e.
above the curve (wy), Sp andS, solutions coexist and collide/disappearat: (wy, ), whereas fotuy, > wy., the coexisting
solutions are\, andSy. As a side comment, the reason for the existencg,dbr wi, < wg4 and of A for wy, > we within
Region Il has to do with the fact that these solutions efietyi “morph” from one to the other (smoothly) as this freqogrs
crossed.

Ford = 3¢, the scenario is similar to the last one, except for two [goifitst, they; curve finishes aty, = wg and encompasses
an accordingly broader region IlI; and second, the solstiarregion I1l,A, andA, are stable for any value efandwy,.

We focus now on thbard potential (i.e. = —1) properties. In all the cases, we can find the region |, wighsitime properties
as in the soft case (although now it is thesolution that exists and th, that bifurcates into existence beyond the boundary of
the region). In addition, region Il is present in every caselosed between curvesr(wy) andy; (wy, ); there are two solutions
therein: theA, solution and th&, for wi, < w,— and theA, andA,, for wy, > wy—. Under the curvey, (wy, ), whose minimum
value takes place af, = wy— (S0 thatvg_ = wy for ¢ = 3e¢), the four kinds of solutions coexist, so tttandS,, collide and
disappear at this line. As in the soft case, there is a “maigtfrom theS, to A, solutions when the frequenay;_ is crossed.

Thus, the most significant difference between the threeideresd regimes lies in the existence of region IV and cup\(ey,).
Region Il is characterized by the fact that all the solusiextist (as mentioned above) and are stable. However, be®autrve
~2(wp) (i-e. in region V), solutiorS, becomes unstable. Notice that for= ¢ this region exists for everyy, > wy_ ~ 1.4029.
However, ifd = 3¢/2, region 1V is shrunk to the range, - ~ 1.3138 < w}, < 1.71. Finally, region IV has totally vanished at
0 = 3e.

IV. ANALYSISOF THE OSCILLATOR DIMER

In this section, we complete the description of the systemehyrning to the original oscillator system and analyzisgkact
periodic orbits (that up to now we had only approximated g¢ire RWA). This is done by numerically solving in the Fourier
space the dynamical equations §ét (1) [cf. Appehdix A]. Thawe express the solution in the form:
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FIG. 1: y-w;, plane fork = 1/15/8. Details on the meaning of each curve and region can be foutigitext. The linear limit of the oscillator
system is denoted by, while the upperP7-symmetric threshold of solution existence is denotedypy. An additional delimiter of the
existence of further solutions, andSg is also given byy:. The existence regions of the different solutions are empemsed by these curves
both in the soft = 1 case (left panels) and in the hare= —1 case (right panels).

u(t) = Z Yn exp(inwpt), v(t) = Z 2, exp(inwpt). (35)

n n

We have considered the same cases as in Sécfion Ill, nafjielyqual to 13/2 and 3, withe = +1.
Prior to showing the results, we want to remark that the Fowoefficients 05, and A solutions (due to their symmetry)
have the following property:

Yn =2, (S0),  Yn = =2, (Ao)- (36)

In what follows, we will first show the properties of the saduts at the Hamiltonian limity = 0. Afterwards, we will be
focusing in the different cases 6fe > 0 for v # 0. In most cases, results will be compared with the previof@iynd results
for the RWA.



A. Solutionsfor v =0

We start by analyzing the modes that can be expressed amadllyat they = 0 limit. In fact, these can be expressed in terms
of Jacobi elliptic functions. It > 0 (soft potential), the solutions are of the form:

u(t) = Asn[ft;m]|, wv(t)==+Asn[ft;m], (37)
with
2m 2o 1FEk 7B
A=BT% P o im T k) (38)

with the upper (lower) sign corresponding to thg (Ao) solution, K (m) the complete elliptic integral of the first kind with
modulusm [@], and0 < m < 1. As K(m) > w/2, it is easy to deduce that, < ws = +/1 — k for the Sy solution and
wp < wa = V1 + k for the Ay solution, as within the RWA.

If € < 0 (hard potential), these modes can be expressed as:

u(t)=Acn[ft;m], wo(t)=+Acn[St;m], (39)
with
B 2m 2 1Fk 7B

where0 < m < 1/2. Similar to the soft casey, > ws for the Sy solution anduy, > wa for the Ay solution. Notice that for
these solutions to exigt< —e.
At § = e and for a hard potential, th&, andA, solutions are given by:

u(t) = Asn(Bt;m) + By/men(Bt;m),  v(t) = £[Av/msn(Bt;m) — By/men(Bt;m)], (41)

(3m—2[32+2 /1 2m+1 7B
A= i =2k/m, wp= SK(m) (42)

The AS solution can be analytically expressed whenévere. If € > 0, it is given by:

provided

u(t) = Ay sn[By t;my]+ A_sn[f_t;m_], ov(t) = Ay sn[By t;my] — A_sn[f_ t;m_], (43)
with

2my s 1Fk owBy TBe
A:t - B:ﬁ: e ﬂi - 1 Wp = 2K(m+) - 2K(m_)’ (44)

whereas if < 0, the AS solution is:

u(t)=A; en[By t;my ]+ A-en[B- t;m_], o(t) = Ay en[By t;my] — A_en[f- t;m_], (45)
with
mi ¥k k _omBy mBe
A =Pz T omy’ T 2K(my)  2K(m_)’ (46)

It can be numerically observed thag, Sy and AS solutions exist for evefywhereas 4 andS,, do not exist fors < 3¢/2in
thee = +1 case. On the contrary, a new solution denoted asxists for the soft potential and all of the considered valnfe;
this new solution, which was not found in the= 0 case, is characterized by a high increase of the third hamothe Fourier



9

series, and, consequently, cannot be predicted by the RW&eXistence of this new solution can be caused by the hyhtidn

of theSy mode with frequencyy, and theA, mode with frequencgwy,; this symmetry breaking effect could happen whenever
wp, < wa /3 ~ 0.4061. Notice that theAs mode bifurcates from thg, mode atvs, which exactly coincides wittv, /3 when

0 = 3¢, but is smaller than this when < 3e (e.g. ford = 3¢/2, ws ~ 0.384 whereasvs ~ 0.365 for 0 = ¢.). There is no
stability change at this bifurcation.

The asymmetric (AS) solution preserves the propertiessoRIWA. That is, it bifurcates from th&, solution in soft potentials
and from theS, solution for hard potentials. The AS solution does not eidst = § and for§ = 3¢/2 > 0. Besides, all the
Floquet exponents ae= 0 (or, equivalently, the Floquet multipliers as#el) for 6 = 3e. Ford = 3¢/2 < 0, the AS solution
is unstable, as in the RWA. In addition, fér= 3¢, the AS,S; and A, solutions bifurcate from thé, solution atw, = ws if
e = +1, with theS, and A, solutions being stable and thg stable (unstable) fap, > ws (w, < wg); if € = —1, the AS,

S¢ and A solutions bifurcate from th8, mode atu, = wa, with the Sy solution being stable and i, unstable, whereas
the A, is marginally stable as are the AS solutions (all the Flogxgbnents are zero). In tide= 3¢/2 < 0 case, theés,; and

A, solutions, which are stable, bifurcate from thesolution atw, ~ 1.306 which is close tavs_; the S, solution is stable
(unstable) forw, smaller (higher) than the bifurcation point. This lattefubcation also occurs fof = ¢ = —1, taking place

in this case at, ~ 1.386. In addition, the AS solution (which is unstable) bifurcafeom theS, solution (which changes its
stability) atwy, &~ 1.708, a value which is close to (but not exactly atys_. We must also mention that for the case analyzed in
[27],i.e.8 = 0, the AS solution bifurcates from tt# (Ao) solution in the soft (hard) potential. This situation iseesed in the
present observations for sufficiently large- 0, which suggests the existence of a critical point.

Finally, as within the RWA, the energy coincides for the Ag,andA; solutions wher = 3e.

All the previous properties are summarized in Hig. 2 wheeeHiamiltonian energy is depicted versus and compared
with the averaged Hamiltonian for the RWA. This figure is cdempented by Figs[]3 arid 4 where the time evolution of the
different solutions are displayed. Importantly, we shqubéht out here that it is evident that the approximationgived in the
RWA become demonstrably less accurate especially in thaneafinearity case and particularly as the frequenajecreases
away from the linear limit (and hence nonlinear terms becomee significant). Nevertheless, the qualitative agredmokthe
features of Fig.[R2 is still fairly satisfactory for the regnof parameters considered herein. On the other hand, fdratte
nonlinearity case, the agreement seems to be even quigetitaiccurate for the frequency range considered.

B. § = e case: existence of exact solutions

One of the main features of this case is the existence of taotgeriodic solutions tg11):

u(t) = Asin(wy, t), v(t) = £ Acos(wy t) (47)
fulfilling that:

1_ 2
k=Fywn, A= “b (48)

€

with the upper sign corresponding to the symmetric soludind the lower one to the anti-symmetric solution. It is intpot to
note that for a giverk, the frequency is proportional to/~. Thus, the two solutions collide 8s— oo, whenwy, — 0. That s,
contrary to the “standard” model 6f= 0, since for the case considered herein there exist nonlgaationsfor all values ofy
that are not subject to the relevant transitior) [38]. Thistson can actually be cast g5 = z, = 0 V|n| > 1andg = 7 /2. If
we fix the value ot, it is clear from Eq.[(4B) that the properties of the solusionly depend on two parameterskas k(wy, ).
That is, contrary to what we have discussed so far, here wetiixn: and varyy andwy,, but rather than varying andwy,, we

fix a value ofk associated with them through EQ.{48). Thus, we will conside effect on the stability of varying parameters
wy, andy in the case = 1 (soft potential) and = —1 (hard potential). Notice also that given the restrictiomsrfulated in[(4B)
and the symmetry properties of the dynamical equationg;litguet spectrum for a given set of parameters is the sanitor
solutions.

Fig. [3 shows the stability/instability regions for theséusions. Shaded areas correspond to stable solutions. &bk line
therein indicates the locus in thew, plane wheré: = /15/8 (i.e., the value used for other results in the present wdmkm
this line, it can be deduced that solutions wjth= +7/2 whend = € are stable in the ranga, € [0.8535,1]if e = 1 and in
wp € [1,1.029] U [1.2206, 00) if € = —1.

The averaged energy is, for both solutioasH >= W which, fore = 1 has a maximum aty, = 3~/2 ~ 0.5774;
for e = —1, this function is monotonically decreasing. It is worth riening that fory = 0, where the averaged energy
coincides with the Hamiltonian, there is a stability chaage = 3~'/2, the value at whictd H/0w changes its slope. This
correlation between energy maximum and stability changleigh resembles the Vakhitov-Kolokolov criterion for NLigstems,
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FIG. 2: Energy versusy, aty = 0. Full blue lines correspond to the Hamiltonidh (4) of fulleid-Gordon dimer whereas the dashed red lines
represent the averaged energy within the RIVA (22).

is not observed for solutions that do not fulfill conditig@j4ind, consequently, possess more than one harmonic iifFtheier
series.

The above mentioned exact solutions constitute only a sufsbe wholey — w;, plane, which is depicted in Fi§l 6. This
figure shows the existence range of the different solutibasarise fory # 0 andd = . We explain below the different regions
and curves.

In the case ofoft potential, we observe, as expected, the cupvevhich encloses a region with onl§, solutions, asS,
bifurcates from the left arm of the curve. In addition, abtve curveypr, which indicates thé7 transition and is very close
to the value predicted by RWA, there are no periodic orbitsis Transition is caused by ttesllision of Ay andS, solutions
wheneverw,, > w3 ~ 0.365. Contrary to the expectation from RWA, there are three marges in the considered range. At
the right of curvey,, A, solutions are stable; similarly, below to the right of thevaidenoted byys, S solutions are stable.
Consequently, fow, < 0.8 the PT phase transition takes place between the unstaplnd Ay solutions. This behavior is
similar to the one observed for tlle= 0 case[[2]7]. Notice the existence of a third curge which terminates abj, = ws.
This curve corresponds to the loci for the occurrence of #ttglke-node bifurcation between tﬂ@andAg“ solutions. With this
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FIG. 3: Time evolution of all the different solutions considd aty = 3¢ for the soft nonlinearity case ef= 1 andwy, = 0.3; herey = 0.

notation we remark that this solution isAgz mode whose phase differenges in the first quadrant fofy ~ 0. Remarkably,
there is a different behavior regardifigin the regions between the curvesand-s; in the former, the phase of the mode is in
the fourth quadrant whereas in the latter, the phase lidsaffitst quadrant. Additionally, far, < w3, the Ag mode collides
and disappears gbr with the A; mode; contrary to thd; case, the phase of this mode lies in the fourth quadrantchlatso
that in the region below curve;, the stability description is not trivial; despite this, wen say that for smalf, both A$ and
S solutions are stable. Finally, far, < 0.31, we observe that botA; solutions coalesce into thi, solution with frequency
3wy, and theS, solution transforms into a new solution that collides arghgdpears with thd; solution atypr. A summary of
the bifurcations fors, > w3, together with energy, phases, Floquet multipliers andpaorions with RWA are shown in Figl 7.
Figure[8 shows the bifurcation diagrams and Floquet migtiplforw,, = 0.35 andw;, = 0.3.
The case of hard potential & ¢ = —1) is also illustrated in Fig.]6. The curves and regions arévadgnt to the RWA case,
except for one fact: there is a region between curngeand~ypr Where theS, solution is unstable, similar to the= 0 case
[27]. Since this is the only feature not captured by the RWAniist be directly connected with the emergence/role oférigh
harmonics in the system. Figurk 9 shows the averaged enetatiye phase and Floquet exponents for the differentisois
and compares them with the corresponding RWA resultssfpor= 1.3 andwy, = 2, identifying accurate semi-quantitative
agreement, as expected from the discussion above.
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C. ¢ = 3¢/2 case: Manakov-like coupling

The interest of this case lies in the fact that, in the RWA,dbepling between fields, is similar to the Manakov equatien i
bearing equal self- and cross- interaction among the conmuelinear variables, . Figure[I0 shows the different regions for
the soft and hard case. In the soft case, the behavior isasitnilthat ofé = ¢, even though the RWA predicted the existence
of A4 andS,, solutions for this case. Fan, < 0.29, the bifurcation diagram becomes very complex, similahtt= ¢ case.

For the hard case, the phenomenology is similar tojthe e case; i.e. there is a good agreement with the RWA except for an
additional region for which th&, solution is unstable. Because of the greater similarithwlteo = ¢ case, no bifurcation
diagrams are included for the present case.

D. § = 3ecase Integrability

This case is arguably more interesting than the previousrmwteonly because of the existence of more solution faméres
also nontrivial discrepancies with the RWA regimes, bubdiscause of the integrability of the dynamical equatiosghay
form the Hamiltonianf,, [cf. Eq. (B)]
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correspond to the RWA predictions and the dotted fine, corresponds to the exact solutions with phage described in Fig[]5. Notice
that the colors of the dashed lines are inverted with redpetiat of the numerical results for a better visualizatidhis inversion pattern is
followed also in all figures comparing theory and numericahputations from here on.

Figure11 illustrates the different regions in this case.the soft case, th&, andS,, modes do exist, as in the RWA. Contrary
to the RWA predictions, however, the modes bifurcatingsat are theS, andA, ones forw, > w3 = wa /3 and theA; and
A, otherwise, whereas the modég andS,, bifurcate aty;. The curvesy, and~s have a similar meaning as before, whereas at
the right of curvey, itis the Ay mode which is unstable. While the RWA predicted stabilityrfaodes below curve;, here the
Ay andS, modes are stable for smalland unstable close tp (the change of stability curve is not shown in the figure ineord
not to make it even more complex).

The hard case is similar to the previous ones except for twis:fgi) the curveys, above which thes, mode is unstable,
extends now for every value afy,, tending asymptotically tox = 0 for high wy, (and, consequently, fan, > wa the Ay
solution is unstable above the curve); (ii) below cugg(which does not exist within the RWA), tHg, solution is unstable,
contrary to the previous values &for which it was the5; mode that was unstable below the curve.

Figure[12 illustrates the bifurcations mentioned above leans of the dependence Hf, on ~ [39]. From the figure, it is
evident that depending on the particular value of the fraqugit is possible that, andA,, as well asS, and A will collide
and disappear in pairwise saddle-center bifurcationg){lef, AT andS,, as well asA; andA, may feature such collisions
(middle); orSy andS,, andA, andA, may collide and disappear hand-in-hand (right panel).

V. DYNAMICSOF UNSTABLE SOLUTIONS

Finally, in this section, we briefly touch upon some exampfdbe dynamical evolution of unstable modes. We are notrami
to be exhaustive; it should be evident at this point that dasethe bifurcation scenarios alone, such a detailed stumydv
warrant a separate paper. Instead, we aim to present a févaltygxamples of dynamical outcomes observed when evolving
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FIG. 8: Averaged energy (left) and modulus of the Floquettipligrs (right) as a function of the gain/loss paramegdor ¢ = § = 1 and
wp, = 0.35 (top) orw, = 0.3 (bottom). Blue (red) line corresponds to thg (Ao) solution, while in the top panels, black and green lines
represent the twa ; solutions discussed in the text; andA; .

unstable configurations in this system.

In the soft potential, unstable solutions are mostly pranklow-up, even in thé = 3¢ case wherd1, is conserved. This
blow-up could consist of both sites tendingxtoor —co at the same time (specially 8y andA solutions), or one site going to
oo and the other one teco mostly inA, andSy solutions.A solutions can exhibit both behaviors. For small values,dhe
instabilities can lead to quasi-periodic oscillationsgwhver the solution at = 0 is stable (if the solution is unstableat= 0,
it is prone to blow-up). Figurle_13 shows several exampleb®flynamics of soft potentials.

In the hard potential case, there are some differences batiie dominant behavior whén= ¢ with respect t® = 3¢,
as shown in Fig[(14. In the former case, where the instaslitirise from th&, solutions, we have observed quasi-periodic
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FIG. 10: Planes with curves separating regions of solutibasshare the same properties wiiea 3¢/2 ands = +/15/8 (see text).

oscillations with amplitude peaks when, > w,;_ and without these peaksdfi, < w,_. In the latter case, although quasi-
periodic oscillations are present (mainly for small growdtes), the dominant behavior is an apparent (modulatgrential
growth on the anti-damped site, associated with a decayeodetmped site. This decay is very much slower when the irisyabi
arises from the\, solution.

VI. CONCLUSION

In the present work, we have studied various exact solutamstheir stability for a generalize®7-symmetric coupled
nonlinear oscillator system. Complementing earlier wdrtth at the linear level [25] (describing a recent experinfi2g]) and
atthe nonlinear level [26, 27], we have examined a varietasés regarding the relative strength of the self- and ¢nossaction
between our nonlinear oscillators. In our earlier work [2ly self-interactions were considered, while in the imant recent
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work of [26], only a specific value of the cross interactionswamnsideredd = 3¢), revealing remarkably the Hamiltonian
nature of the model, and then restricting consideratiotst®NLS analogue. Here, we have extended consideratiomsee t
relevant cases, namely= ¢, 6 = 3¢/2 andd = 3¢, exploring how the existence, nonlinear bifurcation anenegtynamical
trends develop as we move from weaker to stronger crosgattien between the nonlinear oscillators. Importantlg, televant
pictures were developed not only for the rotating wave axipration model of the DNLS form, but also for the full model
of the coupled oscillators. Generally, the two cases, natiel monochromatic approximation and the full system wengy v
similar, except for the highly nonlinear regime, espegiatl the soft nonlinearity case. Numerous important featwere
identified along the way including, e.g., new families ofigimns at relative phase angles other thaandr (introduced by the
cross-interaction between oscillators), as well as smhgtiractable solely in a numerical form from the four pryadifamilies
explored. Yet another feature was the existence in thelatgikystem of families of solutions not only in the= 0 but evenin
the~ # 0 case in explicit form; one such pair of families appears ®@fytithe P7 phase transition (in thé& = ¢ case), existing
for all values of the gain/loss parameterFinally, the instabilities identified in the analysis wenenitored in the full dynamics
of the system, revealing the possibility of either indeérgtowth or that of bounded quasi-periodic oscillationghagpertinent
dynamical outcome.

There are numerous questions that naturally emerge as la oése present work. Among the most immediate ones, it
is worthwhile to extend considerations to the case of, ¢hgee oscillators and perhaps even to that of four such, ifagrm
effectively a two-dimensional plaquette and a buildingckléor the consideration of higher dimensional systemshedpirit
also of [9]. Furthermore, here only the case of cubic noaliities has been explored, but it might be also of interssarmther
prototypical nonlinear system to examine the case of quiadranlinearities and how their nonlinear states are “dafed” in
the presence of gain and loss. At a perhaps deeper levelybowlgere are also some intriguing questions that we fealzased.
For one, an apparentl7-symmetric and viewed as a gain-loss bearing systefn-at3e is found to be Hamiltonian. This
raises the natural yet difficult question: can we discermsugotential Hamiltonian nature and classify a system asilttanian
(and notPT) possibly through an appropriate (to be identified) tramafion? If so, what is the relevant criterion and how can
we exclude the presence of a yet-unknown transform that raayect a system classified &7 into one which is genuinely
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Hamiltonian in a different set of variables ? Potential pesg along these veins will be reported in future work.
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Appendix A: Numerical analysis of periodic orbits

In order to calculate periodic orbits, we make use of a Fospace implementation of the dynamical equations and moaHi
tions in frequency or gain/loss parameter are performed piath-following (Newton-Raphson) method. Fourier spaethods
are based on the fact that the solutions Bseperiodic; for a detailed explanation of these methods réaaler is referred to
Refs. [35[ 36]. The method has the advantage, among otHgns)dding an explicit, analytical form of the Jacobian.ughthe
solution for the two nodes can be expressed in terms of adtadd-ourier series expansion:

u(t) = Z Yn exp(inwpt), v(t) = Z 2z, exp(inwpt), (AL)

with n,, being the maximum of the absolute value of the running indé@x our Galerkin truncation of the full Fourier series
solution. In the numericsy,,, has been chosen as 21. After the introductioriaf (A1), theadyinal equationg{1) yield a set of
2 x (2n,, + 1) nonlinear, coupled algebraic equations:



18

d=¢e=—1,wp=1,7=0.16 (So) 0=¢e=—1,wp =2,v=0.46(So)
0.4

0.3

o ©
[N S )

u(t), v(o)
u(t), v(t)

1
o
[

-0.2

-0.3f

04 500 1000 1500 % 200 400 600 800 1000
t t
0=3c,e=1w, =2,7=0.2(Ay) 0=3¢,e=1wp, =2,7=0.3(S4)
15 ‘ ‘ ‘ 20
10+ 15+

101

o

o

u(), v(t)

u(®), v(t)

-5t

|
ol

-10}

|
[
o

-15+

% 100 200 300 20

t

FIG. 14: Evolution of unstable solutions for the hard patEntThe top panels feature examples of quasi-periodicllagons, while the
bottom panels illustrate indefinite growth of one of the batrs coupled with a decaying oscillation of the otherggibly very slowly, as in
the case of the bottom left panel).

Fo1 = —win’y, — iywunyn + Fu[V' (u,v)] — kz, =0, (A2)
Foo = —win?z, +iywpnz, + Fu[V/ (v,u)] — kyn = 0, (A3)

with V' (uy, us) = u1 — eu$ — duyu3. Here,F, denotes the Discrete Fourier Transform:

qD exp {—127;“1] : (A4)

with N = 2n,,, + 1. The procedure fof, (v) is similar to the previous case. Agt) andv(t) must be real functions, it implies
thaty—n = y;= B—n = Z’;kl

In order to study the spectral stability of periodic orbit, introduce a small perturbatidg; , &2 } to a given solutiod ug, vo }
of Egs. [1) according te = ug + &1, v = vp + &. Then, the equations satisfied to first orde¢,jread:

RV =5 Y v’( > e i

q=—"m P=—Nm

& = (Beud + v — 1)& + 7€ + (k + 20ugvo) e,

52 (36’1}(2) + (5u(2) — 1)52 - ’752 + (k + 25’(1,0’00)51, (A5)
or, in a more compact form\ ({u(t), v(t)})¢ = 0, whereN ({u(t),v(¢)}) is the relevant linearization operator. In order to
study the spectral (linear) stability analysis of the ral@solution, a Floquet analysis can be performed if theig €k, € R so

that the mag«(0), v(0)} — {u(Ty),v(Ty)} has a fixed point (which constitutes a periodic orbit of thigioal system). Then,
the stability properties are given by the spectrum of thej&ét operatosM (whose matrix representation is the monodromy)

defined as:
< {&(T1)} > M ( {£n(0)} ) _ (A6)
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The4 x 4 monodromy eigenvalues = exp(if) are dubbed th&loquet multipliersandé are denoted aBloquet exponents
(FEs). This operator is real, which implies that there issgisva pair of multipliers at (corresponding to the so-called phase and
growth modes) and that the eigenvalues come in dairs\*}. As a consequence, due to the “simplicity” of the FE struetur
(one pair always at and one additional pair) there cannot exist Hopf bifurgaim the dimer, as such bifurcations would imply
the collision of two pairs of multipliers and the consequfenination of a quadruplet of eigenvalues which is imposstidre.
Nevertheless, in the present problem, the motion of thegfaitultipliers can lead to an instability through exitingrdugh1
or —1) on the real line leading to one multiplier (in absolute &llarger thari and one smaller thah
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