1,339 research outputs found

    Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells

    Get PDF
    Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator

    Human Pathogen Shown to Cause Disease in the Threatened Eklhorn Coral Acropora palmata

    Get PDF
    Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine “reverse zoonosis” involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival

    The paleobiological record of photosynthesis

    Get PDF
    Fossil evidence of photosynthesis, documented in Precambrian sediments by microbially laminated stromatolites, cyanobacterial microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends from the present to ~3,500 million years ago. Such data, however, do not resolve time of origin of O2-producing photoautotrophy from its anoxygenic, bacterial, evolutionary precursor. Though it is well established that Earth’s ecosystem has been based on autotrophy since its very early stages, the time of origin of oxygenic photosynthesis, more than 2,450 million years ago, has yet to be established

    Development of a modified floristic quality index as a rapid habitat assessment method in the northern Everglades

    Get PDF
    Floristic quality assessments (FQA) using floristic quality indices (FQIs) are useful tools for assessing and comparing vegetation communities and related habitat condition. However, intensive vegetation surveys requiring significant time and technical expertise are necessary, which limits the use of FQIs in environmental monitoring programs. This study modified standard FQI methods to develop a rapid assessment method for characterizing and modeling change in wetland habitat condition in the northern Everglades. Method modifications include limiting vegetation surveys to a subset of taxa selected as indicators of impact and eliminating richness and/or abundance factors from the equation. These modifications reduce the amount of time required to complete surveys and minimizes misidentification of species, which can skew results. The habitat characterization and assessment tool (HCAT) developed here is a FQA that uses a modified FQI to detect and model changes in habitat condition based on vegetation communities, characterize levels of impact as high, moderate, or low, provide predictive capabilities for assessing natural resource management or water management operation alternatives, and uniquely links a FQI with readily accessible environmental data. For application in the northern Everglades, surface water phosphorus concentrations, specific conductivity, distance from canal, and days since dry (5-year average) explained 67% of the variability in the dataset with \u3e 99.9% confidence. The HCAT approach can be used to monitor, assess, and evaluate habitats with the objective of informing management decisions (e.g., as a screening tool) to maximize conservation and restoration of protected areas and is transferable to other wetlands with additional modification

    ResBoost: characterizing and predicting catalytic residues in enzymes

    Get PDF
    Abstract Background Identifying the catalytic residues in enzymes can aid in understanding the molecular basis of an enzyme's function and has significant implications for designing new drugs, identifying genetic disorders, and engineering proteins with novel functions. Since experimentally determining catalytic sites is expensive, better computational methods for identifying catalytic residues are needed. Results We propose ResBoost, a new computational method to learn characteristics of catalytic residues. The method effectively selects and combines rules of thumb into a simple, easily interpretable logical expression that can be used for prediction. We formally define the rules of thumb that are often used to narrow the list of candidate residues, including residue evolutionary conservation, 3D clustering, solvent accessibility, and hydrophilicity. ResBoost builds on two methods from machine learning, the AdaBoost algorithm and Alternating Decision Trees, and provides precise control over the inherent trade-off between sensitivity and specificity. We evaluated ResBoost using cross-validation on a dataset of 100 enzymes from the hand-curated Catalytic Site Atlas (CSA). Conclusion ResBoost achieved 85% sensitivity for a 9.8% false positive rate and 73% sensitivity for a 5.7% false positive rate. ResBoost reduces the number of false positives by up to 56% compared to the use of evolutionary conservation scoring alone. We also illustrate the ability of ResBoost to identify recently validated catalytic residues not listed in the CSA

    Critical reflections on evidence, ethics and effectiveness in the management of tuberculosis: public health and global perspectives

    Get PDF
    BACKGROUND: Tuberculosis is a major cause of morbidity and mortality globally. Recent scholarly attention to public health ethics provides an opportunity to analyze several ethical issues raised by the global tuberculosis pandemic. DISCUSSION: Recently articulated frameworks for public health ethics emphasize the importance of effectiveness in the justification of public health action. This paper critically reviews the relationship between these frameworks and the published evidence of effectiveness of tuberculosis interventions, with a specific focus on the controversies engendered by the endorsement of programs of service delivery that emphasize direct observation of therapy. The role of global economic inequities in perpetuating the tuberculosis pandemic is also discussed. SUMMARY: Tuberculosis is a complex but well understood disease that raises important ethical challenges for emerging frameworks in public health ethics. The exact role of effectiveness as a criterion for judging the ethics of interventions needs greater discussion and analysis. Emerging frameworks are silent about the economic conditions contributing to the global burden of illness associated with tuberculosis and this requires remediation

    Innate immune activation by inhaled lipopolysaccharide, independent of oxidative stress, exacerbates silica-induced pulmonary fibrosis in mice

    Get PDF
    Acute exacerbations of pulmonary fibrosis are characterized by rapid decrements in lung function. Environmental factors that may contribute to acute exacerbations remain poorly understood. We have previously demonstrated that exposure to inhaled lipopolysaccharide (LPS) induces expression of genes associated with fibrosis. To address whether exposure to LPS could exacerbate fibrosis, we exposed male C57BL/6 mice to crystalline silica, or vehicle, followed 28 days later by LPS or saline inhalation. We observed that mice receiving both silica and LPS had significantly more total inflammatory cells, more whole lung lavage MCP-1, MIP-2, KC and IL-1ÎČ, more evidence of oxidative stress and more total lung hydroxyproline than mice receiving either LPS alone, or silica alone. Blocking oxidative stress with N-acetylcysteine attenuated whole lung inflammation but had no effect on total lung hydroxyproline. These observations suggest that exposure to innate immune stimuli, such as LPS in the environment, may exacerbate stable pulmonary fibrosis via mechanisms that are independent of inflammation and oxidative stress. © 2012 Brass et al

    Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4

    Get PDF
    Contains fulltext : 96097.pdf (postprint version ) (Open Access)BACKGROUND: The cellular response of malignant tumors to hypoxia is diverse. Several important endogenous metabolic markers are upregulated under hypoxic conditions. We examined the staining patterns and co-expression of HIF-1alpha, CAIX, LDH-5, GLUT-1, MCT1 and MCT4 with the exogenous hypoxic cell marker pimonidazole and the association of marker expression with clinicopathological characteristics. METHODS: 20 biopsies of advanced head and neck carcinomas were immunohistochemically stained and analyzed. All patients were given the hypoxia marker pimonidazole intravenously 2 h prior to biopsy taking. The tumor area positive for each marker, the colocalization of the different markers and the distribution of the markers in relation to the blood vessels were assessed by semiautomatic quantitative analysis. RESULTS: MCT1 staining was present in hypoxic (pimonidazole stained) as well as non-hypoxic areas in almost equal amounts. MCT1 expression showed a significant overall correlation (r = 0.75, p < 0.001) and strong spatial relationship with CAIX. LDH-5 showed the strongest correlation with pimonidazole (r = 0.66, p = 0.002). MCT4 and GLUT-1 demonstrated a typical diffusion-limited hypoxic pattern and showed a high degree of colocalization. Both MCT4 and CAIX showed a higher expression in the primary tumor in node positive patients (p = 0.09 both). CONCLUSIONS: Colocalization and staining patterns of metabolic and hypoxia-related proteins provides valuable additional information over single protein analyses and can improve the understanding of their functions and environmental influences

    Bacterial Chemotaxis in an Optical Trap

    Get PDF
    An optical trapping technique is implemented to investigate the chemotactic behavior of a marine bacterial strain Vibrio alginolyticus. The technique takes the advantage that the bacterium has only a single polar flagellum, which can rotate either in the counter-clock-wise or clock-wise direction. The two rotation states of the motor can be readily and instantaneously resolved in the optical trap, allowing the flagellar motor switching rate to be measured under different chemical stimulations. In this paper the focus will be on the bacterial response to an impulsive change of chemoattractant serine. Despite different propulsion apparati and motility patterns, cells of V. alginolyticus apparently use a similar response as Escherichia coli to regulate their chemotactic behavior. Specifically, we found that the switching rate of the bacterial motor exhibits a biphasic behavior, showing a fast initial response followed by a slow relaxation to the steady-state switching rate . The measured can be mimicked by a model that has been recently proposed for chemotaxis in E. coli. The similarity in the response to the brief chemical stimulation in these two different bacteria is striking, suggesting that the biphasic response may be evolutionarily conserved. This study also demonstrated that optical tweezers can be a useful tool for chemotaxis studies and should be applicable to other polarly flagellated bacteria

    A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279

    Get PDF
    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and gamma-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10^5 gravitational radii.Comment: Published in Nature issued on 18 February 2010. Corresponding authors: Masaaki Hayashida and Greg Madejsk
    • 

    corecore