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Abstract Floristic quality assessments (FQA) using
floristic quality indices (FQIs) are useful tools for
assessing and comparing vegetation communities and
related habitat condition. However, intensive vegetation
surveys requiring significant time and technical exper-
tise are necessary, which limits the use of FQIs in
environmental monitoring programs. This study modi-
fied standard FQI methods to develop a rapid assess-
ment method for characterizing and modeling change in
wetland habitat condition in the northern Everglades.
Method modifications include limiting vegetation sur-
veys to a subset of taxa selected as indicators of impact
and eliminating richness and/or abundance factors from
the equation. These modifications reduce the amount of
time required to complete surveys and minimizes mis-
identification of species, which can skew results. The
habitat characterization and assessment tool (HCAT)
developed here is a FQA that uses a modified FQI to
detect and model changes in habitat condition based on
vegetation communities, characterize levels of impact as
high, moderate, or low, provide predictive capabilities
for assessing natural resource management or water
management operation alternatives, and uniquely links
a FQI with readily accessible environmental data. For

application in the northern Everglades, surface water
phosphorus concentrations, specific conductivity, dis-
tance from canal, and days since dry (5-year average)
explained 67% of the variability in the dataset with >
99.9% confidence. The HCAT approach can be used to
monitor, assess, and evaluate habitats with the objective
of informing management decisions (e.g., as a screening
tool) to maximize conservation and restoration of
protected areas and is transferable to other wetlands with
additional modification.

Keywords HCAT. A.R.M. LoxahatcheeNational
WildlifeRefuge .Floristic quality index .Floristicquality
assessment . Coefficient of conservatism .Wetland
condition

Introduction

Plant communities are indicators of ecological integrity
because of their rapid growth rates, sensitivity to envi-
ronmental stressors, and their role as the foundation of
habitats (Cohen et al. 2004; Smith et al. 1995; USEPA
2002). Floristic quality assessment (FQA) tools use
existing plant communities to objectively and reliably
assess and/or compare habitats spatially and/or tempo-
rally (e.g., Nichols et al. 2006; Taft et al. 1997; Herman
et al. 1997; Wilhelm and Masters 2006a, b; Cretini et al.
2012). Floristic quality assessment tools, such as Floris-
tic Quality Indices (FQI), are typically based on coeffi-
cient of conservatism values (CC), which are published
sets of quantitative values that serve as indicators of
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fidelity of individual species to a particular site or set of
conditions. These tools have been used with increasing
frequency for quantitatively assessing habitat condition
of public lands (Bourdaghs 2012) and have been includ-
ed in monitoring programs for by federal and state land
managers, including the US Environmental Protection
Agency, US Army Corps of Engineers, US Geological
Survey (USGS) Minnesota Pollution control agency,
and Louisiana Coastal Protection and Restoration
Authority.

Typical FQAs use intensive and repeated field sur-
veys to derive FQIs from average CC and site richness
values. The resulting site-specific FQI values can be
compared across space and time within and between
sites to determine changes in the severity and/or spatial
extent of impact from stressors such as elevated phos-
phorus levels from adjacent land use. Disadvantages of
typical FQIs include the need for intensive and repeated
plant surveys, as well as the significant potential for
misidentification of species because of the requirement
to identify all plants to the species level (Johnston et al.
2008). Typical FQIs used in FQAs include a site rich-
ness factor. However, earlier studies indicate that aver-
age CC values as an index score are a more reliable
indicator of site condition and can be adequately calcu-
lated with minimal and controlled sampling effort
(Rooney and Rogers 2002; Bourdaghs et al. 2006).
Further, common and easy to identify species have been
found to be the main drivers of typical FQI results, and
limiting surveys to those species did not significantly
change the interpretability of FQI scores (Lopez and
Fennessey 2002; Johnston et al. 2008; Bourdaghs
2012; Chamberlain and Brooks 2016). Several studies
concluded that including species richness in FQI calcu-
lations can bias the results because richness is strongly
influenced by sampling effort (Francis et al. 2000;
Matthews 2003; Rooney and Rogers 2002; Taft et al.
1997). Further, Miller and Wardrop (2006) found met-
rics such as species richness and diversity were not
strongly correlated with disturbance and therefore do
not likely provide significant benefit to tool sensitivity
or accuracy. By eliminating species richness as a metric
in the current study, the method could be applied as a
rapid assessment method requiring minimal resources
and training.

In this study, the habitat characterization and assess-
ment tool (HCAT), a modified FQI and associated mod-
el was developed to monitor and predict the impact of
adjacent land use and water management operations on

the northernmost wetland of the remaining Everglades.
Published coefficients of conservatism values
(Mortellaro et al. 2009) and relatively little variability
in seasonal plant distribution support the application of
FQA tools in the Everglades. Large-scale restoration
efforts in the Everglades have included substantial in-
vestment in monitoring and evaluating impacts and
progress of projects meant to improve the structure
and function of the Everglades, with a particular focus
on vegetation communities (Ogden 2005).

While the Everglades landscape has high biodiver-
sity, much of the diversity is at the landscape level
and stems from a mosaic of patches of generally
lower-diversity habitats, such as sawgrass ridges
and wet prairies. The HCAT focuses on wetland taxa
typically found in wet prairie habitats, which have
higher diversity than some habitats, such as Cladium-
dominated communities, but even wet prairie habitats
tend to be dominated by a few species (e.g.,
E. elongata) or taxa, with rarer species spread
throughout. The most impacted areas eventually tran-
sition to monotypic stands of Typha in some areas, as
the result of increased nutrients and extended
hydroperiods (Brown et al. 2006). Initial method
development required selection of indicator taxa for
the specific habitat and area being monitored using
best professional judgment, available literature, and
restoration goals. The taxa selected for the HCAT are
common in the Everglades and have widespread dis-
tribution throughout the study site. Once developed,
the HCAT provides a rapid habitat assessment and
evaluation method using simple vegetation surveys
that can be completed quickly by trained, non-
technical individuals. The tool significantly simpli-
fied standard FQA survey methods, reduced variabil-
ity among samplers, and minimized species misiden-
tification. Modeled index values link drivers of veg-
etation communities to changes in habitat quality and
provides predictive capabilities to the tool.

In summary, development of the HCAT to character-
ize and assess impacts to northern Everglades marsh
habitat required two steps as follows: (1) modification
and validation of the typical FQI methods and (2) de-
velopment and validation of a model that links vegeta-
tion community drivers with the modified FQI (step #1).
Combined, the modified FQI and model explaining the
observed variability make up a tool (HCAT) for rapidly
assessing and monitoring habitat quality in the northern
Everglades.
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Materials and methods

Site description

Water levels in the Arthur R. Marshall Loxahatchee
National Wildlife Refuge (Refuge; Fig. 1), like the rest
of the Everglades, were historically driven by rainfall
and sheet flow from Lake Okeechobee that resulted in
seasonal fluctuations in water levels (Bernhardt and
Willard 2009; Bernhardt et al. 2013). Elevation in the
refuge marsh ranges from 3.2 to 5.6 m NGVD (Wang
et al. 2008;Wang et al. 2009), with the greatest elevation
located in the northern-central portion of the refuge.
Elevation and resulting hydrologic patterns are signifi-
cant drivers of vegetation communities in the northern
Everglades. The refuge was impounded by a canal and
levee system on all sides during the 1950s as part of the
Central and South Florida Project (Porter and Porter
2002). Surrounding canals receive water from urban
and agricultural runoff during the wet season. Presently,
the system relies on a combination of rainfall and man-
aged structural inflows and outflows to control inunda-
tion and dry-down cycles (Marchant et al. 2009;
Meselhe et al. 2010; Bernhardt et al. 2013).

The refuge is underlain mostly by Fort Thompson
Formation, which is covered by 2 to 3 m of organic rich
peat (Richardson et al. 1990;McCormick et al. 2011) that
has been impacted by hydrologic operations. Water con-
trol structures in the northern refuge deliver mineral- and
nutrient-enrichedwater along the refuge perimeter, which
leads to loss of peat through stimulation of microbes that
increase decomposition rates, particularly along areas of
western perimeter marsh (McCormick et al. 2011).

Refuge marsh hydrology follows a wet and dry sea-
son pattern, with wet seasons generally beginning in
May and ending in October (Bernhardt et al. 2013).
Approaching the dry season, marsh water stage begins
to decrease from the marsh interior (higher elevation)
toward the canal with slough areas holding water longer
than proximal ridge and tree island areas. Historic
hydropat terns (f low and hydroperiods) and
microtopographic heterogeneity within the refuge pro-
moted development and maintenance of slough, ridge,
and tree island habitats (Larsen et al. 2007 and 2010).
Marsh areas directly adjacent to perimeter canals expe-
rience greater water depths and longer hydroperiods as a
result of canal influence.

Nutrient-enriched runoff from agricultural and urban
areas is delivered to the canals surrounding the refuge

marsh through water control structures. When canal
stages increase above marsh stages as a result of inflows
to the canals, even at moderate rates, the enriched water
can intrude into the marsh (Harwell et al. 2008; Surratt
et al. 2008), resulting in long-term impacts on critical
habitat components, such as vegetation and periphyton
communities (McCormick et al. 2011). Canal water has
been observed to penetrate into the marsh up to 3.9 km
under moderate to high inflow (> 20 m3 s−1; Surratt et al.
2008) conditions when canal stage was greater than
marsh stage. Although total phosphorus (P) is rapidly
scavenged from the water column by vegetation and soil
adsorption, the distance of impact from these canals can
be observed in soil profiles (Reddy and Osborne 2007),
periphyton composition (McCormick 2010), as well as
in common surface water quality parameters (e.g.,
sulfate, total nitrogen, chloride, etc.; Harwell et al. 2008).

Canal water movement and distance of impact into
the marsh interior can be tracked and monitored using
surface water specific conductivity (Harwell et al.
2008). Harwell et al. (2008) also used surface water
conductivity to further characterize the marsh into three
zones of canal water influence as follows: perimeter
zone (≤ 2.5 km from the canal), transition zone (2.5 to
4.5 km from the canal), and interior zone (> 4.5 km from
the canal). Consequently, the distance from the canal
(DFC) into the marsh serves as a crude indicator of
anthropogenic impact to the refuge. As a result of these
dynamics, total phosphorus concentration is a direct
indicator of water quality, distance from canal (km) is
an indirect measure of hydrology and water quality
(Harwell et al. 2008; Surratt et al. 2008), and days since
dry (DSD; 5-year average) directly represent hydrologic
conditions.

Data collection

Taxa surveyed

Seven common taxa and/or species (Bacopa
caroliniana, Eleocharis elongata, Nymphoides
aquaticum, Eriocaulon spp., Xyris spp., Typha spp.,
and Polygonum spp.) (Table 1) were selected for use in
the HCAT based on CC values (Mortellaro et al. 2009)
and current/historic distributions within the study site.
These taxa reflect the level of habitat impact and eco-
logical condition based on the historic and current dis-
tribution across the refuge (Gibble et al. 2013) as well as
represent a range of habitats and environmental
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conditions. This suite of taxa responds to changes in
hydrology and nutrient levels and are useful as indica-
tors of current conditions based on existing vegetation
communities.

Within the northern Everglades, Bacopa caroliniana
(lemon bacopa) is a common substrate for periphyton,
the base of the Everglades food chain. This species is
commonly used in aquaculture and is not generally

Fig. 1 Arthur R. Marshall Loxahatchee National Wildlife Refuge, Boynton Beach, FL, USA. Sampling locations indicated by solid circles
(training) and open diamonds (validations)
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sensitive to nutrient inputs. Although previous studies
(Busch et al. 1998) did not find significant hydrologic
relationships, B. caroliniana was found at the greatest
abundances at the driest site and is known to tolerate
depths up to only 1 m (Godfrey and Wooten 1981).
Therefore, hydrological impacts are likely driving the
observed distribution of B. caroliniana in unpublished
data (Gibble et al. 2013) as a result of water levels
frequently greater than 1 m near the adjacent perimeter
canals. Although there are several species of Bacopa,
the likelihood of misidentification is minimal because
this species is easily identified by the lemony scent of
crushed B. caroliniana leaves.

Nymphaea aquatica (banana lily) and E. elongata
(slim spikerush) are both associated with undisturbed
areas of deeper peat, such is found in the refuge (Davis
and Ogden 1994). The distribution of E. elongata is also
likely driven by primarily hydrologic factors. Miao and
Zou (2012) reported significant mortality of E. elongata
when water depths were increased from 20 cm to 60 cm.
There was also a lack of growth plasticity in response to
changing water levels. Nymphaea aquatica has been
characterized as decreasing in abundance in response
to disturbance (Doherty et al. 2000). Further,
N. aquatica is typically associated with low concentra-
tions of nutrients such as phosphorus (Doherty et al.
2000). Both of these species are easily identified.
Nymphaea aquatica has characteristic bumps on the
underside of the large leaves that makes it distinctive
from other related species. Eleocharis elongata is often

a dominant species within the study site and is distin-
guished from other species by small stature, growth
patterns, and general appearance.

Yellow-eyed grasses (Xyris spp.) are common in the
study site but are rare further south in the Everglades
system (Kushlan 1990). Xyris ambigua, X. brevifolia,
and X. smalliana are the yellow-eyed grasses that have
known distributions (and vouchered specimens) within
the study site. Coefficient of conservation values among
Xyris species occurring within the study site range from
five to eight. However, for this index, all relevant Xyris
species were combined into Xyris spp. to simplify iden-
tification. The high end of the value range (8) was
selected for use in the HCAT as a modified CC value
for Xyris spp. This value was selected based on the
published distribution of X. smalliana throughout the
refuge, which was limited to those areas least impacted
by water quality (McCormick et al. 2011) despite its
moderate CC value (5), as well as the distribution ob-
served at water quality monitoring sites across the ref-
uge (Gibble et al. 2013). Xyris smalliana was found to
lack sensitivity to exposure to common nutrients, nitro-
gen, potassium, or phosphorus individually, but when
exposed to water chemistry similar to that found within
the canal, growth rates were significantly reduced
(McCormick et al. 2011). The other two Xyris species
that may occur within the refuge (X. ambigua and
X. brevifolia) both have high CC values (8 and 7,
respectively). Use of the modified CC value for Xyris
spp. is therefore appropriate for this tool when used in
the northern Everglades. Like X. smalliana ,
E. compressum was only found at sites in the refuge
that were distant from the canal in a previous study
(McCormick et al. 2011). Eriocaulon species with
vouchered specimens in Florida (E. compressum and
E. decangulare) are easily identified by a white flower
spike when blooming. Annual surveys are targeted for
completion between May and October when this often
submerged species is most visible. When not blooming,
this species can still be easily identified at close prox-
imity by its characteristic cellular leaf structure. Addi-
tionally, all species found in Florida have CC values of
eight or nine.

Typha spp. (cattail) is a well-established indicator of
stress (both nutrient enrichment and hydrology) within
numerous ecosystems, including wetlands and lakes of
the Everglades (Davis and Ogden 1994). Various spe-
cies of both Typha and Polygonum (smartweed) were
also found to be positively correlated with stress in the

Table 1 Vegetation species, corresponding coefficients of conser-
vatism (CC) values, and impact multiplier used as the response
variables in the Habitat Characterization and Assessment Tool.
Taxa with negative impact multipliers are indicators of impacted
vegetation communities

Vegetation species Coefficient of conservatism
(CC) value

Impact
multiplier

Bacopa
carolinensis

8 +

Eleocharis
elongata

8 +

Eriocaulon
compressum

8 +

Nymphoides
aquaticum

5 +

Xyris spp. 8 +

Polygonum spp. 3.5 –

Typha spp. 2 –
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habitats of the Great Lakes (Johnston et al. 2008;
Doherty et al. 2000; Lane et al. 2003). Typha spp. and
Polygonum spp. were present across the study area with
a high frequency in high impact areas in available
datasets (Rutchey et al. 2006; Gibble et al. 2013). Like
Xyris, Polygonum and Typha were only required to be
identified to genus for the HCAT in order to simplify
identification. This was considered an acceptable mod-
ification for Typha, because both species likely to be
found in the northern Everglades have the same low CC
value of two. Of the Polygonum species present in the
study area, P. setaceum has a relatively high CC value of
seven and may only infrequently occur within the study
site. Polygonum hydropiperoides, with a CC value of
three, is much more common throughout the southeast
coastal areas, and Polygonum spp. is typically found in
impacted areas of the study site as determined by un-
published data collected during routine water quality
monitoring (Gibble et al. 2013). Therefore, Polygonum
spp. was assigned an overall value of 3.5 due to its
limited distribution in the refuge and observed prefer-
ence for impacted sites within the study site.

Published CC values for native Florida flora taxa
range from zero to ten. Index values near zero indicate
taxa that are commonly found in ruderal conditions.
Taxa assigned higher index values are more closely
associated with natural, unimpacted conditions
(Mortellaro et al. 2009). Species commonly observed
in the refuge have CC values ranging from two to eight.
Taxa selected as indicators are consistent with distribu-
tions relative to habitat quality observed in the refuge,
meaning that taxa with CC values below five are gen-
erally located in areas of nutrient enrichment (impacted)
in the perimeter zone (< 2.5 km from the canal), while
taxa with values of five or greater are found further away
from the canal water influence in the transition zone (2.5
to 4.5 km from the canal) and interior zone (> 4.5 km
from the canal). Two of the seven taxa (Polygonum spp.
and Typha spp.) reflect impacted conditions while the
remaining taxa reflect more natural conditions.

These seven taxa were incorporated into the surface
water quality sampling program for the South Florida
Management District (SFWMD), and observations at
fixed monitoring stations have occurred monthly since
2007. Surveys were conducted at a series of fixed long-
term monitoring stations in the wet and dry seasons of
2009 and 2011 (model training dataset) and at randomly
selected validation stations in the dry season of 2013
(Fig. 1). The validation sample design was stratified

across three marsh water quality zones taking into ac-
count variance of the index values determined from the
long-term stations and a 90% confidence interval. All
stations, long-term and validation, were accessed by
float helicopter or airboat with efforts to reduce station
disturbance from vehicular influence during sample col-
lection. For the long-term fixed stations, select taxa were
surveyed with 1 m2 quadrats to determine relative per-
cent cover and taxa presence-absence at 10 plots spaced
at 5-m intervals along one 50-m transect per site within
100 m of station center.

Validation stations were surveyed using a rapid as-
sessment protocol developed by an interagency team
(US Fish and Wildlife Service, Everglades National
Park, and South Florida Water Management District).
This protocol requires the sampler to walk a distance of
20 m from the access vehicle to the sampling location.
The sampler records only the presence of any of the
seven indicator taxa observed within 1 m on either side
of the 20-m path while walking to a randomly selected
water sampling location, and it also records any taxa
present within 25 m (360° field of view) of the sampling
location. No other parameters, such as percent cover, are
recorded using this rapid assessment methodology.

Abiotic factors influencing vegetation community
composition

Several major abiotic factors that influence vegetation
community composition were assessed to understand
their influence on refuge-specific vegetation community
composition. Abiotic factors assessed at each station
include the following: hydrology (days since dry and
365-day average depth), topography, spatial location,
and surface water quality (explained in more detail
below).Water depths and hydroperiod have been shown
to be directly related to vegetation community compo-
sition including in the refuge marsh, although individual
species response is varied (Newman et al. 1996; King
et al. 2004). Distance from canal influences the water
quality found at each station (Harwell et al. 2008; Surratt
et al. 2008), and water quality has been shown to influ-
ence vegetation community composition (Newman
et al. 1996; Hagerthey et al. 2008; McCormick 2010).
Adjacent canals also strongly influence water levels
around the perimeter of the refuge, resulting in greater
depths and longer hydroperiods (McCormick et al.
2011). In addition to water quality, spatial patterns of
refuge vegetation are also correlated with hydrologic
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gradients that are driven largely by an elevation gradient
that extends north to south (Richardson et al. 1990).

Hydrology

Days since dry (DSD; 5-year average) and 365-day
average depth were determined fromwater depth, which
was determined daily at individual stations as the differ-
ence between the nearest stage gage data available
through the SFWMD DBHYDRO database (South
Florida Water Management District 2018) value and
the station-specific elevation. Days since dry represents
the number of consecutive days since a station experi-
enced surface water depths below 0 cm. The total num-
ber of days was averaged over 5 or 10 years for each
station. The 365-day average depth was calculated as a
365-day rolling average surface water depth at each
station applied on the day of vegetation sample
collection.

Water quality

Surface water samples were collected monthly from
each long-term water quality monitoring station and
were used for the model training set. Water samples
were collected only once during the vegetation sampling
event at randomly selected validation stations. Samples
were collected in clean Nalgene® bottles when clear
water depths were greater than 10 cm (measured at the
station during sample collection) to avoid entraining
sediment or plant-associated particles, often enriched
in phosphorus. Between 250 mL and 4 L of surface
water was collected from each station, depending on
conditions, and transported to either SFWMD or ALS
Analytical (Columbia, MD) for chemical analyses. Both
laboratories are certified by the National Environmental
Laboratory Accreditation Conference and have partici-
pated in the “Everglades Round Robin” cross-laboratory
comparisons for low-level phosphorus analyses. Split
samples have been tested by both laboratories to ensure
comparability of chemical analyses between laborato-
ries. The percent relative difference between the labora-
tories for phosphorus remained below 10%. Samples
sent to ALS Analytical were preserved in the field using
sulfuric or hydrochloric acid, stored on ice, transported
to the on-site laboratory for any further processing (e.g.,
filtering, packing), then shipped on ice overnight to ALS
Analytical for chemical analyses. Samples sent to
SFWMD’s laboratory were stored on ice and

transported back to the SFWMD laboratory for preser-
vation and filtration before on-site analysis. All samples
were processed within a standard 4-h holding time.
Portable data loggers (Hydrolab, Mini Sonde 4a or 5)
were also used according to established protocols
(South FloridaWaterManagement District 2010) during
sampling events to measure specific conductivity levels
at each station.

Statistical analyses

Vegetation community

Similarity of vegetation communities at surveyed sites
was assessed using the inverse of a Jaccard similarity
index (JSI) (Gardner 2014) calculated based on year,
water quality zone, and season. The inverse JSI was
calculated as the total number of indicator species pres-
ent (i.e., total richness) minus the total common taxa
divided by the total richness and compared among
years, zones, and seasons. Inverse JSI values range from
zero (no taxa in common) to one (perfect alignment of
taxa). A percent of taxa commonality measure was
determined by subtracting the index value from one
and multiplying by 100.

Water quality

Mann-WhitneyUwas used to test for differences in total
phosphorus and conductivity among years, seasons, and
zones (Snedecor and Cochran 1989; Zar 1999), similar
to the approach used by Harwell et al. (2008).

Habitat characterization and assessment tool (HCAT)
development

The HCAT includes rapid assessment of habitat condi-
tion using a vegetation survey method that focuses on
presence/absence of key indicator taxa, greatly reducing
the time required to complete surveys and minimizing
misidentification of taxa. Modified FQI values calculat-
ed using rapid assessment data were then modeled to
determine the driving factors for observed habitat
condition.

Modified FQI (response variable) A modified FQI was
developed based on presence-absence of select taxa at
long-term water quality monitoring stations throughout
the refuge. Coefficients of Conservatism values for
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Polygonum spp. and Typha spp. were transformed by
multiplying them by an impact multiplier of negative
one (Table 1) in order to increase the range of responses
and tool sensitivity. Alternatively, for taxa with a higher
affinity to natural areas, CC values were multiplied by
an impact multiplier of positive one. The modified FQI
equaled the sum of the transformed CC values for each
station. Across the sampled stations, the modified FQI
calculation resulted in a range of values from − 1 to 37,
where − 1 reflects monotypic stands of taxa indicative of
impacted conditions and 37 reflects stations indicative
of the most natural conditions within the refuge.

HCAT model The HCAT models the modified FQI
using multiple linear regression in the R statistical com-
puting environment (R Core Team 2014). Conceptually,
the HCAT model aims to account for variability in the
response variable (modified FQI) with respect to regu-
larly monitored drivers. The conceptual model for this
relationship takes the form:

Response (modified FQI) = Hydrologic Effect + Spatial
Effect +Water Chemistry Effect

Average annual water depths and days since dry aver-
aged over 5 or 10 years represented hydrologic effects.
The shortest distance from the closest canal to each
station represented spatial effects and water chemistry
effects represented total phosphorus and conductivity.

The model was calibrated by testing the modified
FQI as the response variable against a suite of explana-
tory variables. Reduction of explanatory variables was
performed using Akaike information criterion (AIC) in
the R package. Residuals of each reduced model were
tested for normality using Anderson-Darling, Lilliefors
(Kolmogorov-Smirnov), Pearson chi-square, and
Shapiro-Wilk tests for normality in R using the “nortest”
package (Gross and Ligges 2012). Residuals from the
model were normally distributed.

The multivariate regression model takes the form:

Modeled Modif ied FQI ¼ mþ b1DSDþ b2DFC

þ b3ln TPð Þ þ b4Cond

where

m = intercept
bx = slope coefficients
DSD = days since dry (5-year average)

DFC = distance from canal (km)
TP = total phosphorus (μg L−1)
Cond = specific conductivity (μS cm−1)

Verification of model of modified FQI

The validity of the model was verified using several
approaches. First, an assessment of the model concepts
was performed. Professional judgment and a conceptual
model were used to generate (Fig. 2) as a modified
subset of the larger ridge and slough conceptual model
presented by Ogden (2005). Solutes in agricultural and
urban runoff greatly influences the composition of sur-
face water delivered to the refuge and acts as a stressor
that degrades habitat quality. Further, precipitation and
managed water flows drive refuge hydroperiods and
water depth, which also influence habitat quality as
indicated by vegetation community assemblages on
the refuge. Understanding these dynamics informed
the stressors/drivers selected as input into the HCAT
numerical model.

Following verification using conceptual models, a
statistical verification approach was applied to the train-
ing dataset. Means of the observed response variable
from the training dataset were statistically compared
with model projections of the vegetation response vari-
able based on the training dataset using the Mann-
Whitney U test (Snedecor and Cochran 1989; Zar
1999).

The resulting model was applied to the validation
dataset to verify the modeling approach. This approach
simply compared the means for the modeled validation
dataset and the observed response variables using the
Mann-Whitney U test to assess model performance in
locations outside the long-term sampling locations.

HCAT spatial interpretation

The range of values that indicated low, moderate, and
high levels of impact were determined by assessing the
spatial distribution of the modified FQI scores as related
to DFC using change-point analysis. Change-point anal-
ysis, using Taylor Enterprise software—Change-Point
Analyzer (Taylor 2001), combines cumulative sum
charts and bootstrapping in an iterative manner to detect
changes in the time series, which indicates thresholds of
impact that lead to observable change.
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Results and discussion

Abiotic factors affecting vegetation community
composition

Comparisons among years, seasons, and zones indicate
differences in mean total phosphorus, mean specific
conductivity levels, and/or mean days since dry (5-year
average). Mean total phosphorus concentrations in 2009
(7.2 ± 0.4 μg L−1; mean ± standard error) were signifi-
cantly higher (p < 0.01; Mann-Whitney U) than in 2011
(6.2 ± 0.6 μg L−1) and similar to concentrations ob-
served in 2013 (7.2 ± 0.8 μg L−1), while 2011 concen-
trations were significantly lower (p < 0.05; Mann-
Whitney U) than in 2013 (Table 2). Mean specific
conductivity levels across Zones in 2009 (132 ±
11 μS cm−1) were similar to levels observed in 2011
(131 ± 12 μS cm−1), while 2009 and 2011 levels were
significantly lower (p < 0.05; Mann-Whitney U) than in
2013 (200 ± 26 μS cm−1) (Table 2). Average days since
dry (5-year average) was similar between 2009 (1272 ±
111 days) and 2011 (1310 ± 112 days), but both years
had significantly shorter durations (p < 0.05; Mann
Whitney U) than during 2013 (2504 ± 205 days)
(Table 2).

Across all years, mean total phosphorus concentra-
tions in the perimeter zone (7.8 ± 0.4 μg L−1) were
significantly higher (p < 0.01; Mann-Whitney U) than
in the transition (5.8 ± 0.7 μg L−1) and interior (5.7 ±
0.5 μg L−1) zones, while there was no significant

difference between the transition zone and interior zone
concentrations (Table 2). Mean specific conductivity in
the perimeter zone (205 ± 14 μS cm−1) was significantly
higher (p < 0.01; Mann Whitney U) than in the transi-
tion zone (98 ± 9 μS cm−1) and interior zone (80 ±
6 μS cm−1), while there was no significant difference
between the transition zone and interior zone levels.
Perimeter zones were wetter than the transition and
interior zones as indicated by days since dry over 5 years
in the perimeter zone (1925 ± 115 days) being signifi-
cantly higher (p < 0.01; Mann-Whitney U) than in the
transition (1287 ± 148 days) and interior (1104 ±
151 days) zones, while transition and interior zones
were not statistically different (Table 2).

Seasonal comparisons were also conducted, and
overall wet season mean (± SE) total phosphorus con-
centrations (7.6 ± 0.5 μg L−1) were significantly higher
(p < 0.01) than dry season concentrations (5.5 ±
0.4 μg L−1). Mean (± SE) conductivity levels were
similar between wet (131 ± 11 μS cm−1) and dry (127
± 11 μS cm−1) seasons. Mean (± SE) DSD (5 year) were
also similar between wet (1297 ± 105) and dry seasons
(1286 ± 110).

Vegetation community similarity

Percentages of shared taxa and spatial distribution of
taxa across the refuge were compared by year, season,
and zone (Table 3a–c). The percentage of taxa shared
throughout the refuge among years ranged from 42 to

Fig. 2 Conceptual model of
drivers (rectangles), stressors
(rounded squares), ecological
effects (diamonds), and
ecological attributes (hexagon) of
concern
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45%. Thirty-six percent of the taxa observed during the
wet season were observed during the dry season. The
seasonal comparison excludes 2013, when only dry
season samples were collected. Among zones, the tran-
sition and interior zones (29% had the highest percent-
age of vegetation taxa in common with and the perim-
eter and interior zones (21%) had the lowest community
similarity.

Distribution differences in the spatial distribution of
taxa were observed within seasons (Fig. 3a–c). During
the wet season (Fig. 3a), Bacopa caroliniana distribu-
tion in the marsh ranged from about 0.5 km from the
canal to approximately 8.2 km in 2009 but receded to
about a maximum distance of 4.2 km from the canal in
2009. Wet season Nymphoides aquatica spanned from
between 3 and 5 km to over 9 km into the marsh from
the canal. Polygonum spp. were only observed in 2009
during the wet season at about 1 km into the marsh from
the canal.

Dry season spatial variability was observed among
the three sampling years (Fig. 3b–c). Bacopa
caroliniana spanned between 1.3 and 8.2 km into the

marsh from the canal in 2009 and had similar spatial
cover in 2011 except with the distribution extended to
about 0.8 km from the canal at this time point (Fig. 3b).
However, in 2013 (Fig. 3c),Bacopa carolinianawas not
observed until about 1.7 km into the marsh from the
canal, although spatial coverage in the marsh was sim-
ilar to 2009 and 2011. Nymphoides aquatica was ob-
served during dry season sampling events between 1.5
and 9.7 km into the marsh from the canal during the dry
season in 2009 and 2011. In 2013, N. aquatica was
observed between 2.5 and the furthest sampling site
from the canal (8.4), similar to observations made in
the 2009 and 2011 wet season. Dry season observation
of Xyris spp. in 2009 and 2011 covered from 4 to 9.7 km
into the marsh, and the range extended from 1.8 to the
maximum sampling distance of 8.4 km in 2013. Typha
spp. observation extended from the marsh edge to about
1.8 km into the marsh in the dry seasons of 2009 and
2011 but extended to 2.7 km in 2013.

Community similarity index values were largely con-
sistent among years and between seasons, although
there was slightly lower similarity between seasons,

Table 2 Index value means and standard errors (parentheses) of
model parameters (left column) organized by water quality zones
and years. Letters (a, b, c) reflect significant (p < 0.01; Mann-

Whitney U test) differences among zones. Numbers situated next
to letters reflect significant (Mann-Whitney U test) differences
among years

Parameter Zone 2009 2011 2013 All years

N Perimeter 28 36 16 80

Transition 17 18 13 48

Interior 18 18 6 42

All zones 63 72 35 170

Modified index value Perimeter 7.9 (0.9)a1 7.5 (0.9)a1 9.1 (2.0)a1 8.0 (5.7)a

Transition 15.5 (2.1)b1 15.7 (2.0)b1 18 (2.4)a2 16.3 (8.4)b

Interior 21.3 (1.9)a1 21.6 (1.6)c2 26.3 (4.5)a2 22.1 (7.9)c

All zones 13.8 (9.0)1 13.1 (8.7)2 15.3 (10.7)1 13.8 (0.7)

Total phosphorus (μg L−1) Perimeter 8.5 (0.6)a1 7.5 (0.8)a1 7.4 (0.7)a1 7.8 (0.4)a

Transition 5.1 (0.6)b1 4.9 (0.9)b1 7.9 (1.9)a2 5.8 (0.7)b

Interior 7.2 (0.6)a1 4.3 (1.0)b2 5.4 (0.4)a2 5.7 (0.5)b

All zones 7.2 (0.4)1 6.2 (0.6)2 7.2 (0.8)1 6.7 (0.3)

Specific conductivity (μS cm−1) Perimeter 184 (20)a1 184 (15)a1 287 (44)a2 205 (14)a

Transition 85 (12)b1 76 (8)b1 145 (22)b2 98 (9)b

Interior 95 (6)c1 63 (11)b2 87 (7)c1 80 (6)b

All zones 132 (11)1 131 (12)1 200 (26)2 144 (8)

Days since dry (5-year average) Perimeter 1650 (152)a1 1673 (133)a1 2972 (299)a1 1925 (115)a

Transition 1045 (221)b1 993 (214)b1 2011 (283)a2 1287 (148)b

Interior 901 (180)b1 901 (180)b1 2324 (549)a2 1104 (151)b

All zones 1272 (111)1 1310 (112)1 2504 (205)2 1542 (82)
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possibly because of seasonal patterns of blooming and
visibility. The HCAT was further validated by similar
trends in community similarity and modified FQI
values, in which the moderate and low impact transition
and interior zones had the most taxa in common, while
the highest and least impacted perimeter and interior
zones had the fewest taxa in common. This finding
was expected, as the highest impact sites were primarily
monocultures of dense Typha with limited species, such
as Polygonum, also present at much lower densities.
Presence frequency of taxa serving as indicators of
quality habitat rise as distance from canal increases.
Therefore, the highest community similarity would be
expected between the moderate and low impact because
of the extremely low diversity of the high impact zone,
as observed.

HCAT

Model calibration

Following vegetation community driver reduction,
calibration of the model resulted in significant cor-
relations between the response variable (i.e., modi-
fied FQI) training dataset and the distance from
canal (DFC), days since dry (DSD) averaged over
5 years, and the natural log of total phosphorus. The
average days since dry over 10 years, 365-day av-
erage water depth, and average conductivity were
eliminated during the AIC analysis. The resulting
multivariate model was:

Modif ied Floristic Quality Index

¼ mþ b1DSDþ b2DFC þ b3ln TPð Þ

Modif ied Floristic Quality Index

¼ 17:65542−0:0040820*DSD

þ 1:8991772*DFC−2:9182566*ln TPð Þ
The model explained 67% of the variance in the

training dataset with a residual standard error of 5.02.
Further, the model was significant at p < 0.001.

Model validation

Mean of the observed modified FQI (13.4) for the
complete training dataset was consistent with the
projected modified FQI (13.2) based on results of the
Mann-Whitney U test (p value). Applying the model to
the validation dataset and regressing the observed and
projected response variable values resulted in a R2 of
0.56 with a residual standard error of 3.73 and a p value
less than 0.001. Further, there was no significant differ-
ence between the observed mean of the validation
dataset and predicted values for the modified FQI.

Modified floristic quality index (response variable)

The lowest modified FQI scores (reflecting high impact
conditions) were found up to 1.36 km from the perim-
eter canal, mid-range modified FQI values were gener-
ally located from 1.36 km to 3.91 km from the canal,
and the highest index values, indicating the least im-
pacted vegetation communities, were found at locations
greater than 3.91 km from the perimeter canal (Figs. 4
and 5).

Mean modified FQI values were similar between
2009 (13.8 ± 9.0) and 2013 (15.3 ± 10.7), but both years
had higher values than in 2011 (13.1 ± 8.7; Table 2).Wet
(12.6 ± 8.5) and dry (14.7 ± 9.7) season index values
were also similar, regardless of year. By zones, across
all years, index values significantly increased (p < 0.01;
Mann-Whitney U) from the perimeter zone (8.0 ± 5.7)
to the interior (22.1 ± 7.9) zones

Table 3 Percent of taxa shared among (a) years, (b) season, and
(c) zones based on Jaccard similarity index

(a) Year %Similarity

2009 to 2011 45

2009 to 2013 45

2011 to 2013 42

(b) Season

Dry to wet 36

(c) Zones

Perimeter to transition 23

Perimeter to interior 21

Transition to interior 29
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HCAT levels of impact target

Results from the change-point analysis on the modified
FQI scores sorted as distance from canal resulted in two
change-points (Fig. 4). The first change-point (99%
confidence) was situated at 1.36 km into the marsh from
the canal and reflected a change from an average mod-
ified FQI score of 6 prior to 1.36 km to 11 at distances
from the canal greater than 1.36 km into the marsh. The
second change-point (100% confidence) was situated at
3.91 km into the marsh from the canal and reflected a
change from an average response variable score of 11 to
21 at distances greater than 3.91 km into the marsh.
Thus, based on characterized water zones, a value of 6
or below reflected high impact, between 6 and 21 rep-
resented moderate impact, and values 21 or higher were
areas reflective of low impact (Fig. 5).

The HCAT provides a rapid 1st-order screening tool
to assess habitat and informmanagement and restoration
decisions in the northern Everglades. This tool employs

simplified vegetation surveys and a modified FQI for
rapidly assessing the level of impact to vegetation com-
munities resulting of degraded environmental condi-
tions, such as water quality and hydrology, which ulti-
mately can reduce the capacity of an area to maintain
natural function and support sensitive wildlife species.
The HCAT also has predictive capabilities to help better
understand the potential impacts of proposed projects
and can also be integrated into management decisions
through the development of performance measures and
specific targets or thresholds.

Expert opinion, current and historic vegetation distri-
bution, and published CC values were used to select the
species included in the index. Richness and abundance
factors are commonly used in typical FQIs; however,
these metrics are highly influenced by sampling effort
and sampling area potentially leading to misleading or
counterintuitive results (Andreas et al. 2004; Miller and
Wardrop 2006). Rooney and Rogers (2002) ultimately
determined that FQIs without a species richness

Fig. 3 Taxa presence/absence data by distance from canal for
2009 and 2011 wet season survey (left panel), 2009 and 2011
dry season survey (center panel), and 2013 dry season validation
survey (right panel). Taxa indicated with “sp.” include modified

CC values due to multiple potential species potentially being
present, but all indicate similar levels of impact in this system.
See text for more information
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multiplier was more appropriate for comparing similar
habitat types. Therefore, neither richness nor abundance
were included in the HCAT in order to simplify data
collection and avoid producing biased or unreliable
results.

The modified FQI response variable was modeled
with readily available environmental data, which is a

novel approach for applying FQAs (FQIs) to predict
impacts of planned projects or management operations
and inform management decisions. The final model
included hydrology (days since dry; 5 year average)
and water quality (distance from canal and TP) param-
eters, which aligned with hydrologic trends and water
quality zones described byHarwell et al. (2008) (Fig. 4).

Fig. 4 Change-points of the modified FQI scores (as Loess
smooth curve) based on distance from canal into the marsh. Red
vertical lines represent change-points, while the solid black line

represents modified FQI scores. Dashed vertical lines represent
boundaries of water quality zones described in Harwell et al.
(2008)

Fig. 5 Boxplots, including range
and mean and standard
deviations, of modified FQI
values based on change-point
analysis. High impact represent
modified FQI scores from the ca-
nal into 1.36 km into the marsh;
moderate impact represent modi-
fied FQI scores from 1.36 km into
the marsh up to 3.91 km into the
marsh; and low impacts represent
modified FQI scores 3.91 km into
the marsh and greater

Environ Monit Assess         (2020) 192:340 Page 13 of 17   340 



Although community similarity did not differ between
years, there were differences between zones, where the
transition and interior zones were more similar than
perimeter and transition or Interior zones (Table 3). This
result was expected, as the perimeter zone is highly
impacted and the vegetation community is largely dom-
inated by taxa indicative of impact (Typha and Polygo-
num). The strong similarity and correlation between the
modified FQI distribution and environmental drivers
(hydrology and water quality) as indicated in Harwell
et al. (2008) increase confidence in the modified FQI as
a tool for assessing habitat condition and indicate that
the index is sensitive enough to distinguish between
low, moderate, and high levels of impact based on site-
specific vegetation communities.

The results of this study indicate the HCAT is
sensitive enough to detect significant changes in
plant communities and habitat condition, including
the introduction of negative indicators within a site,
but it should be noted that this method was not
designed to detect early loss of rare species. Nega-
tive transformation of the CC values for indicators
of impact (Typha spp. and Polygonum spp.), which
are typically absent from non-impacted sites
(Fig. 3), increased the sensitivity of the HCAT. This
transformation increased the range of the response
variable and increased analysis sensitivity, which
allows the observation of stepwise degradation using
the expansion of negative indicators (e.g., cattail) as
markers of degradation. If impact at a site continues,
expansion of negative indicators is typically follow-
ed by the loss of high-quality habitat indicators, as
occurs in typical habitat degradation pathways.

The HCAT provides a framework for using select
plant taxa to characterize the level of impact based
on the distribution of included taxa. The distribution
of target species in the current study (Fig. 3) support
the use of Typha spp. and Polygonum spp. as indi-
cators of impact (negative CC values), as they were
only present near perimeter canals. Distribution pat-
terns also indicate that Xyris spp., N. aquatica, and
Eriocaulon spp. are the most sensitive indicators of
non-impacted sites as these species were present at
sites greater than 1.5 km from the canal and absent
from sites closest to the canal. Eleocharis elongata
and Bacopa caroliniana were the least sensitive of
the positive indicator species, as indicated by their
broad distribution regardless of proximity to adja-
cent canals.

Conclusion

The HCAT has several potential applications including
monitoring of vegetation community trends over time,
among and between site comparisons, setting specific
targets for desired conditions (e.g., restoration goals),
and developing performance measures to evaluate prog-
ress toward stated goals and objectives. Potential targets
could include specific index values or proportion of sites
that have increasing trends in index value over time.
Targets can also be applied to specific sites of interest.
The level of success achieving stated targets can be
assessed by developing performance measures relevant
to developed targets. The HCAT tool also includes a
model that can be used to predict impacts and changes to
vegetation communities under conditions expected to
result from proposedmanagement actions, such as water
management decisions for restoration projects. The
HCAT is most powerful for assessing condition and
informing management decisions if it is incorporated
into a robust monitoring program that includes monitor-
ing of drivers of habitat plant communities. However,
even in the absence of additional monitoring strategies,
the HCAT provides valuable information that can be
incorporated into development of effective management
and operations strategies.

The described approach could be modified for other
areas outside of Florida and the Everglades to expand
monitoring capabilities and effective management of
protected areas. Initial development of the HCAT re-
quires identification of indicator species with CC values
that are available or can be developed. However, once
species are selected and validated, surveys can be done
quickly with minimal effort. Selected taxa should be
easy to identify for minimally trained staff, represent a
range of CC values, and include both common desirable
and undesirable species based on conservation or resto-
ration goals. In the northern Everglades, species were
selected to indicate level of impact (hydrology; water
quality) and to measure progress toward restoring the
northern Everglades based on their historic range and
ecological niches. In this case, familiarity with the hab-
itat and different levels of impact was used for initial
selection of species included in the modified FQI. How-
ever, other methods have been used to select species
monitored for use in other indices, such as developing
and applying an index of identification difficulty to
highlight species that are relatively simple to identify
(Chamberlain and Brooks 2016). Modified FQAs, such
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as the HCAT, should be verified using other available
measures of habitat condition (such as water quality
parameters) and, as with any monitoring program,
should be re-evaluated periodically to ensure goals and
stressors have not significantly changed. Once devel-
oped for a specific geographic area, the HCAT can be
used to informmanagement decisions, establish specific
target conditions, monitor cumulative impacts to habitat
quality, and/or develop performance measures for eval-
uating progress toward goals.
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