3,186 research outputs found

    Growth rate and maturation of skeletal muscles over a size range of galliform birds

    Get PDF
    The relationship between growth rate and development of function in leg and pectoral muscles was studied in four species of galliform birds ranging from 125 g to 18 kg and, for comparison, in an altricial species, the European starling (80 g). An index to neonatal maturity (muscle dry content proportion as a fraction of adult value) was higher in leg than in pectoral muscles and lower in larger than in smaller galliforms. The maturity index was substantially lower in starling neonates, After the first week posthatch, however, the maturity index was highest in larger species. Exponential growth rates decreased linearly with increasing maturity in both pectoral and leg muscles, following similar regressions in all species including the starling. At a particular value of the maturity index, the exponential growth rate was higher in pectoral than in leg muscles, The exponential growth rates of muscles of neonatal large galliforms were lower than expected from their low maturity. This may represent the down-regulation shortly after hatching of the high exponential growth rate needed to reach a large hatching mass in a short incubation period. A slower growth rate immediately posthatch may be necessary if the relatively immature neonatal digestive system cannot deliver nutrients or metabolized energy required for more rapid growth. Smaller species may not be faced with the constraint of rapid growth toward the end of the embryonic period

    Treatment of uterine prolapse stage 2 or higher: a randomized multicenter trial comparing sacrospinous fixation with vaginal hysterectomy (SAVE U trial)

    Get PDF
    Contains fulltext : 97471.pdf (publisher's version ) (Open Access)BACKGROUND: Pelvic organ prolapse is a common health problem, affecting up to 40% of parous women over 50 years old, with significant negative influence on quality of life. Vaginal hysterectomy is currently the leading treatment method for patients with symptomatic uterine prolapse. Several studies have shown that sacrospinous fixation in case of uterine prolapse is a safe and effective alternative to vaginal hysterectomy. However, no large randomized trials with long-term follow-up have been performed to compare efficacy and quality of life between both techniques.The SAVE U trial is designed to compare sacrospinous fixation with vaginal hysterectomy in the treatment of uterine prolapse stage 2 or higher in terms of prolapse recurrence, quality of life, complications, hospital stay, post-operative recovery and sexual functioning. METHODS/DESIGN: The SAVE U trial is a randomized controlled multi-center non-inferiority trial. The study compares sacrospinous fixation with vaginal hysterectomy in women with uterine prolapse stage 2 or higher. The primary outcome measure is recurrence of uterine prolapse defined as: uterine descent stage 2 or more assessed by pelvic organ prolapse quantification examination and prolapse complaints and/or redo surgery at 12 months follow-up. Secondary outcomes are subjective improvement in quality of life measured by generic (Short Form 36 and Euroqol 5D) and disease-specific (Urogenital Distress Inventory, Defecatory Distress Inventory and Incontinence Impact Questionnaire) quality of life instruments, complications following surgery, hospital stay, post-operative recovery and sexual functioning (Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire). Analysis will be performed according to the intention to treat principle. Based on comparable recurrence rates of 3% and considering an upper-limit of 7% to be non-inferior (beta 0.2 and one sided alpha 0.025), 104 patients are needed per group. DISCUSSION: The SAVE U trial is a randomized multicenter trial that will provide evidence whether the efficacy of sacrospinous fixation is similar to vaginal hysterectomy in women with uterine prolapse stage 2 or higher. TRIAL REGISTRATION: Netherlands Trial Register (NTR): NTR1866

    Socio-Economic Instability and the Scaling of Energy Use with Population Size

    Get PDF
    The size of the human population is relevant to the development of a sustainable world, yet the forces setting growth or declines in the human population are poorly understood. Generally, population growth rates depend on whether new individuals compete for the same energy (leading to Malthusian or density-dependent growth) or help to generate new energy (leading to exponential and super-exponential growth). It has been hypothesized that exponential and super-exponential growth in humans has resulted from carrying capacity, which is in part determined by energy availability, keeping pace with or exceeding the rate of population growth. We evaluated the relationship between energy use and population size for countries with long records of both and the world as a whole to assess whether energy yields are consistent with the idea of an increasing carrying capacity. We find that on average energy use has indeed kept pace with population size over long time periods. We also show, however, that the energy-population scaling exponent plummets during, and its temporal variability increases preceding, periods of social, political, technological, and environmental change. We suggest that efforts to increase the reliability of future energy yields may be essential for stabilizing both population growth and the global socio-economic system

    The Energy Landscape, Folding Pathways and the Kinetics of a Knotted Protein

    Get PDF
    The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N- or C-terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N-terminus portion of the knot and a rate-determining step where the C-terminus is incorporated. The low-lying minima with the N-terminus knotted and the C-terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N- and C-termini into the knot occur late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.Comment: 19 page

    Visualizing Rank Deficient Models: A Row Equation Geometry of Rank Deficient Matrices and Constrained-Regression

    Get PDF
    Situations often arise in which the matrix of independent variables is not of full column rank. That is, there are one or more linear dependencies among the independent variables. This paper covers in detail the situation in which the rank is one less than full column rank and extends this coverage to include cases of even greater rank deficiency. The emphasis is on the row geometry of the solutions based on the normal equations. The author shows geometrically how constrained-regression/generalized-inverses work in this situation to provide a solution in the face of rank deficiency

    Demographic and Clinical Features of Dengue Fever in Pakistan from 2003–2007: A Retrospective Cross-Sectional Study

    Get PDF
    Background: Demographic features of dengue fever have changed tremendously in Pakistan over the past two decades. Small scale studies from all over the country have reported different aspects of individual outbreaks during this time. However, there is scarcity of data looking at the overall trend of dengue virus infection in the country. In this study, we examined annual trends, seasonality, and clinical features of dengue fever in the Pakistani population.Methods: Demographic information and dengue IgM status of all patients tested for dengue IgM antibody at Aga Khan University Hospital from January 2003 to December 2007 were analyzed to look for trends of IgM-positive cases in Pakistan. In addition, clinical and biochemical parameters were abstracted retrospectively from medical records of all patients hospitalized with IgM-proven dengue fever between January 2006 and December 2007. These patients were categorized into dengue fever and dengue hemorrhagic fever according to the WHO severity grading scale.Results: Out of a total of 15040 patients (63.2% male and 36.8% female), 3952 (26.3%) tested positive for dengue IgM antibody. 209 IgM proven dengue patients were hospitalized during the study period. During 2003, IgM positive cases were seen only during the months of July-December. In contrast, such cases were detected throughout the year from the 2004– 2007. The median age of IgM positive patients decreased every year from 32.0 years in 2003 to 24.0 years in 2007 (p,0.001). Among hospitalized patients, nausea was the most common presenting feature found in 124/209 (59.3%) patients. Children presented with a higher median body temperature than adults (p = 0.010). In addition, neutropenia was seen more commonly in children while raised serum ALT levels were seen more commonly in adults (both p = 0.006). While a low total white cell count was more common in patients with dengue fever as compared to Dengue Hemorrhagic Fever (p = 0.020), neutropenia (p = 0.019), monocytosis (p = 0.001) and raised serum ALT level (p = 0.005) were observed more commonly in the latter group.Conclusions: Dengue virus is now endemic in Pakistan, circulating throughout the year with a peak incidence in the post monsoon period. Median age of dengue patients has decreased and younger patients may be more susceptible. Total and differential leukocyte counts may help identify patients at risk of hemorrhage

    Multi-exon deletions of the FBN1 gene in Marfan syndrome

    Get PDF
    BACKGROUND: Mutations in the fibrillin -1 gene (FBN1) cause Marfan syndrome (MFS), an autosomal dominant multi-system connective tissue disorder. The 200 different mutations reported in the 235 kb, 65 exon-containing gene include only one family with a genomic multi-exon deletion. METHODS: We used long-range RT-PCR for mutation detection and long-range genomic PCR and DNA sequencing for identification of deletion breakpoints, allele-specific transcript analyses to determine stability of the mutant RNA, and pulse-chase studies to quantitate fibrillin synthesis and extracellular matrix deposition in cultured fibroblasts. Southern blots of genomic DNA were probed with three overlapping fragments covering the FBN1 coding exons RESULTS: Two novel multi-exon FBN1 deletions were discovered. Identical nucleotide pentamers were found at or near the intronic breakpoints. In a Case with classic MFS, an in-frame deletion of exons 42 and 43 removed the C-terminal 24 amino acids of the 5(th) LTBP (8-cysteine) domain and the adjacent 25(th) calcium-binding EGF-like (6-cysteine) domain. The mutant mRNA was stable, but fibrillin synthesis and matrix deposition were significantly reduced. A Case with severe childhood-onset MFS has a de novo deletion of exons 44–46 that removed three EGF-like domains. Fibrillin protein synthesis was normal, but matrix deposition was strikingly reduced. No genomic rearrangements were detected by Southern analysis of 18 unrelated MFS samples negative for FBN1 mutation screening. CONCLUSIONS: Two novel deletion cases expand knowledge of mutational mechanisms and genotype/phenotype correlations of fibrillinopathies. Deletions or mutations affecting an LTBP domain may result in unstable mutant protein cleavage products that interfere with microfibril assembly

    Virgo calibration and reconstruction of the gravitational wave strain during VSR1

    Get PDF
    Virgo is a kilometer-length interferometer for gravitational waves detection located near Pisa. Its first science run, VSR1, occured from May to October 2007. The aims of the calibration are to measure the detector sensitivity and to reconstruct the time series of the gravitational wave strain h(t). The absolute length calibration is based on an original non-linear reconstruction of the differential arm length variations in free swinging Michelson configurations. It uses the laser wavelength as length standard. This method is used to calibrate the frequency dependent response of the Virgo mirror actuators and derive the detector in-loop response and sensitivity within ~5%. The principle of the strain reconstruction is highlighted and the h(t) systematic errors are estimated. A photon calibrator is used to check the sign of h(t). The reconstructed h(t) during VSR1 is valid from 10 Hz up to 10 kHz with systematic errors estimated to 6% in amplitude. The phase error is estimated to be 70 mrad below 1.9 kHz and 6 micro-seconds above.Comment: 8 pages, 8 figures, proceedings of Amaldi 8 conference, to be published in Journal of Physics Conference Series (JPCS). Second release: correct typo

    Calibration and sensitivity of the Virgo detector during its second science run

    Full text link
    The Virgo detector is a kilometer-length interferometer for gravitational wave detection located near Pisa (Italy). During its second science run (VSR2) in 2009, six months of data were accumulated with a sensitivity close to its design. In this paper, the methods used to determine the parameters for sensitivity estimation and gravitational wave reconstruction are described. The main quantities to be calibrated are the frequency response of the mirror actuation and the sensing of the output power. Focus is also put on their absolute timing. The monitoring of the calibration data as well as the parameter estimation with independent techniques are discussed to provide an estimation of the calibration uncertainties. Finally, the estimation of the Virgo sensitivity in the frequency-domain is described and typical sensitivities measured during VSR2 are shown.Comment: 30 pages, 23 figures, 1 table. Published in Classical and Quantum Gravity (CQG), Corrigendum include
    corecore