199 research outputs found

    Search for the decay modes D^0 → e^+e^-, D^0 → μ^+μ^-, and D^0 → e^±μ∓

    Get PDF
    We present searches for the rare decay modes D^0→e^+e^-, D^0→μ^+μ^-, and D^0→e^±μ^∓ in continuum e^+e^-→cc events recorded by the BABAR detector in a data sample that corresponds to an integrated luminosity of 468  fb^(-1). These decays are highly Glashow–Iliopoulos–Maiani suppressed but may be enhanced in several extensions of the standard model. Our observed event yields are consistent with the expected backgrounds. An excess is seen in the D^0→μ^+μ^- channel, although the observed yield is consistent with an upward background fluctuation at the 5% level. Using the Feldman–Cousins method, we set the following 90% confidence level intervals on the branching fractions: B(D^0→e^+e^-)<1.7×10^(-7), B(D^0→μ^+μ^-) within [0.6,8.1]×10^(-7), and B(D^0→e^±μ^∓)<3.3×10^(-7)

    Colony Collapse Disorder: A Descriptive Study

    Get PDF
    BACKGROUND: Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L.) colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD) because the main trait was a rapid loss of adult worker bees. We initiated a descriptive epizootiological study in order to better characterize CCD and compare risk factor exposure between populations afflicted by and not afflicted by CCD. METHODS AND PRINCIPAL FINDINGS: Of 61 quantified variables (including adult bee physiology, pathogen loads, and pesticide levels), no single measure emerged as a most-likely cause of CCD. Bees in CCD colonies had higher pathogen loads and were co-infected with a greater number of pathogens than control populations, suggesting either an increased exposure to pathogens or a reduced resistance of bees toward pathogens. Levels of the synthetic acaricide coumaphos (used by beekeepers to control the parasitic mite Varroa destructor) were higher in control colonies than CCD-affected colonies. CONCLUSIONS/SIGNIFICANCE: This is the first comprehensive survey of CCD-affected bee populations that suggests CCD involves an interaction between pathogens and other stress factors. We present evidence that this condition is contagious or the result of exposure to a common risk factor. Potentially important areas for future hypothesis-driven research, including the possible legacy effect of mite parasitism and the role of honey bee resistance to pesticides, are highlighted

    Grazing Rates of Calanus finmarchicus on Thalassiosira weissflogii Cultured under Different Levels of Ultraviolet Radiation

    Get PDF
    UVB alters photosynthetic rate, fatty acid profiles and morphological characteristics of phytoplankton. Copepods, important grazers of primary production, select algal cells based upon their size, morphological traits, nutritional status, and motility. We investigated the grazing rates of the copepod Calanus finmarchicus on the diatom Thalassiosira weissflogii cultured under 3 levels of ultraviolet radiation (UVR): photosynthetically active radiation (PAR) only (4 kJ-m−2/day), and PAR supplemented with UVR radiation at two intensities (24 kJ-m−2/day and 48 kJ-m−2/day). There was no significant difference in grazing rates between the PAR only treatment and the lower UVR treatment. However, grazing rates were significantly (∼66%) higher for copepods feeding on cells treated with the higher level of UVR. These results suggest that a short-term increase in UVR exposure results in a significant increase in the grazing rate of copepods and, thereby, potentially alters the flow rate of organic matter through this component of the ecosystem

    Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema ceranae

    Get PDF
    International audienceBACKGROUND: The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid. METHODOLOGY/FINDING: Five days after their emergence, honeybees were divided in 6 experimental groups: (i) uninfected controls, (ii) infected with N. ceranae, (iii) uninfected and exposed to fipronil, (iv) uninfected and exposed to thiacloprid, (v) infected with N. ceranae and exposed 10 days post-infection (p.i.) to fipronil, and (vi) infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity. CONCLUSIONS/SIGNIFICANCE: After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the increasing prevalence of N. ceranae with high pesticide content in beehives may contribute to colony depopulation

    Body shape variation and colour change during growth in a protogynous fish

    Get PDF
    Protogynous sequential hermaphroditism is very common in marine fish. Despite a large number of studies on various aspects of sequential hermaphroditism in fish, the relationship between body shape and colour during growth in dichromatic species has not been assessed. Using geometric morphometrics, the present study explores the relationship between growth, body shape and colouration in Coris julis (L. 1758), a small protogynous labrid species with distinct colour phases. Results show that body shape change during growth is independent of change in colour phase, a result which can be explained by the biology of the species and by the social control of sex change. Also, during growth the body grows deeper and the head has a steeper profile. It is hypothesized that a deeper body and a steeper profile might have a function in agonistic interactions between terminal phase males and that the marked chromatic difference between colour phases allows the lack of strict interdependence of body shape and colour during growth

    Regulated Fluctuations in Nanog Expression Mediate Cell Fate Decisions in Embryonic Stem Cells

    Get PDF
    The notion that the differentiated state of a cell population is determined simply by expression of specific marker genes is changing. In this work, the authors reveal that a pluripotent cell population comprises cells with temporal fluctuations in the expression of Nanog

    Boost Camp’, a universal school-based transdiagnostic prevention program targeting adolescent emotion regulation; evaluating the effectiveness by a clustered RCT : a protocol paper

    Get PDF
    Abstract Background The transition from childhood into adolescence can be considered as a critical developmental period. Moreover, adolescence is associated with a decreased use of adaptive emotion regulation strategies and an increased use of maladaptive emotion regulation strategies increasing the risk of emotional problems. Targeting emotion regulation is therefore seen as an innovative prevention approach. The present study aims to evaluate the effectiveness of Boost camp, an innovative school-based prevention program targeting ER, on adolescents’ emotion regulation skills and emotional wellbeing. Also secondary outcomes and possible moderators will be included. Methods The aim is to reach 300 adolescents (16 class groups, 6 schools) in their first year of high school. A clustered Randomized Controlled Trial (RCT) with two conditions, intervention (n = 150) and control (n = 150), will be set up. Adolescents in the intervention condition will receive 14 lessons over the course of 2 days, followed by Booster sessions, and will be compared with adolescents in a non-intervention control group. The outcomes will be measured by self-report questionnaires at baseline, immediately after Boost camp, and at three and 6 months follow-up. Discussion Data-collection is planned to be completed in May 2018. Data-analyses will be finished the end of 2018. The presented paper describes the Boost camp program and the clustered RCT design to evaluate its effectiveness. It is expected that Boost camp will have beneficial effects. If found effective, Boost camp will have the potential to increase adolescent’s ER and well-being, and reduce the risk to become adults in need. The trials is registered on the 13th of June 2017 in ISRCTN registry [ISRCTN68235634]

    Deciphering the stem cell machinery as a basis for understanding the molecular mechanism underlying reprogramming

    Get PDF
    Stem cells provide fascinating prospects for biomedical applications by combining the ability to renew themselves and to differentiate into specialized cell types. Since the first isolation of embryonic stem (ES) cells about 30 years ago, there has been a series of groundbreaking discoveries that have the potential to revolutionize modern life science. For a long time, embryos or germ cell-derived cells were thought to be the only source of pluripotency—a dogma that has been challenged during the last decade. Several findings revealed that cell differentiation from (stem) cells to mature cells is not in fact an irreversible process. The molecular mechanism underlying cellular reprogramming is poorly understood thus far. Identifying how pluripotency maintenance takes place in ES cells can help us to understand how pluripotency induction is regulated. Here, we review recent advances in the field of stem cell regulation focusing on key transcription factors and their functional interplay with non-coding RNAs
    corecore