106 research outputs found
Social networks strongly predict the gut microbiota of wild mice
The mammalian gut teems with microbes, yet how hosts acquire these symbionts remains poorly understood. Research in primates suggests that microbes can be picked up via social contact, but the role of social interactions in non-group-living species remains underexplored. Here, we use a passive tracking system to collect high resolution spatiotemporal activity data from wild mice (Apodemus sylvaticus). Social network analysis revealed social association strength to be the strongest predictor of microbiota similarity among individuals, controlling for factors including spatial proximity and kinship, which had far smaller or nonsignificant effects. This social effect was limited to interactions involving males (male-male and male-female), implicating sex-dependent behaviours as driving processes. Social network position also predicted microbiota richness, with well-connected individuals having the most diverse microbiotas. Overall, these findings suggest social contact provides a key transmission pathway for gut symbionts even in relatively asocial mammals, that strongly shapes the adult gut microbiota. This work underlines the potential for individuals to pick up beneficial symbionts as well as pathogens from social interactions.Peer reviewe
Role of eisosomes in the necrotrophic fungus Alternaria brassicicola
lternaria brassicicola is a fungal necrotroph responsible for the Brassicaceae dark spot disease. This fungus is a seed-borne pathogen that only affects the aerial parts of host plants causing great damages with major incidence on yield and product quality. Its transmission to seed is a major component of pathogen fitness promoting the dispersal and long-term survival of the fungus. Recently, we showed that several eisosomal protein encoding genes were overexpressed when germinated spores of A.brassicicola were exposed to osmotic and hydric stresses, which are the main constraints encountered by the fungus during the seed colonization process. MCC/eisosomes are membrane microdomains whose function is still unclear. They have been proposed to participate in the plasma membrane function by regulating the homeostasis of lipids and would promote the recruitment of specific proteins and their subsequent protection from endocytosis. Here, we deciphered the potential involvement of eisosome in pathogenicity using a reverse genetic approach by generating and characterizing mutants deficient for key eisosomal proteinencoding genes (?pil1, ?nce102, ?lsp1 and ?pil1?lsp1). In parallel, these proteins have been fused to GFP to monitor their cellular location during the plant infection and following the exposure to stresses. Depending on the mutants, the leaf and silique colonization processes were impaired by comparison to the wild-type. We also showed a strong impact of MCC/eisosome proteinmutations on the generation of appressoria-like structures
Recommended from our members
Succession of physiological stages hallmarks the transcriptomic response of the fungus Aspergillus niger to lignocellulose.
BackgroundUnderstanding how fungi degrade lignocellulose is a cornerstone of improving renewables-based biotechnology, in particular for the production of hydrolytic enzymes. Considerable progress has been made in investigating fungal degradation during time-points where CAZyme expression peaks. However, a robust understanding of the fungal survival strategies over its life time on lignocellulose is thereby missed. Here we aimed to uncover the physiological responses of the biotechnological workhorse and enzyme producer Aspergillus niger over its life time to six substrates important for biofuel production.ResultsWe analysed the response of A. niger to the feedstock Miscanthus and compared it with our previous study on wheat straw, alone or in combination with hydrothermal or ionic liquid feedstock pretreatments. Conserved (substrate-independent) metabolic responses as well as those affected by pretreatment and feedstock were identified via multivariate analysis of genome-wide transcriptomics combined with targeted transcript and protein analyses and mapping to a metabolic model. Initial exposure to all substrates increased fatty acid beta-oxidation and lipid metabolism transcripts. In a strain carrying a deletion of the ortholog of the Aspergillus nidulans fatty acid beta-oxidation transcriptional regulator farA, there was a reduction in expression of selected lignocellulose degradative CAZyme-encoding genes suggesting that beta-oxidation contributes to adaptation to lignocellulose. Mannan degradation expression was wheat straw feedstock-dependent and pectin degradation was higher on the untreated substrates. In the later life stages, known and novel secondary metabolite gene clusters were activated, which are of high interest due to their potential to synthesize bioactive compounds.ConclusionIn this study, which includes the first transcriptional response of Aspergilli to Miscanthus, we highlighted that life time as well as substrate composition and structure (via variations in pretreatment and feedstock) influence the fungal responses to lignocellulose. We also demonstrated that the fungal response contains physiological stages that are conserved across substrates and are typically found outside of the conditions with high CAZyme expression, as exemplified by the stages that are dominated by lipid and secondary metabolism
Study of the spectral response of CZT multiple-electrode detectors
Cadmium zinc telluride (CZT) is a promising material for room temperature X-ray and gamma-ray detectors. The high atomic number and the wide band-gap give high quantum efficiency and good room temperature performances. Due to hole trapping, particular electrode structures have been developed to provide single-charge carrier collection (electrons), exploiting the excellent charge transport properties of the electrons. In this work, the spectroscopic performances of two CZT detectors (CZT1: 5 mm times 5 mm times 0.90 mm; CZT2: 4.8 mm times 5 mm times 0.55 mm) with five electrodes (cathode, anode and three steering electrodes) were studied. The anode-collecting electrode, surrounded by three steering electrodes (biased for optimum charge collection), is mostly sensitive to electron carriers, overcoming the effects of hole trapping in the measured spectra (hole tailing). We investigated on the spectroscopic response (241Am source; 59.5 keV) of the detectors at different bias voltages of the electrodes. The detectors exhibit excellent energy resolution (CZT1: 2.0% FWHM at 59.5 keV; CZT2: 1.7% FWHM at 59.5 keV; working temperature -10degC) and low tailing (CZT1: FW.1M to FWHM ratio of 1.93 at 59.5 keV; CZT2: 2.35 at 59.5 keV). This study stresses on the excellent spectroscopic properties of the CZT detectors equipped with a custom anode layout, making them very attractive candidates as x-ray spectrometers mainly for medical applications
A flavoprotein supports cell wall properties in the necrotrophic fungus Alternaria brassicicola
Background
Flavin-dependent monooxygenases are involved in key biological processes as they catalyze a wide variety of chemo-, regio- and enantioselective oxygenation reactions. Flavoprotein monooxygenases are frequently encountered in micro-organisms, most of which require further functional and biocatalytic assessment. Here we investigated the function of the AbMak1 gene, which encodes a group A flavin monooxygenase in the plant pathogenic fungus Alternaria brassicicola, by generating a deficient mutant and examining its phenotype.
Results
Functional analysis indicates that the AbMak1 protein is involved in cell wall biogenesis and influences the melanization process. We documented a significant decrease in melanin content in the Δabmak1 strain compared to the wild-type and complemented strains. We investigated the cell wall morphology and physical properties in the wild-type and transformants using electron and atomic force microscopy. These approaches confirmed the aberrant morphology of the conidial wall structure in the Δabmak1 strain which had an impact on hydrophilic adhesion and conidial surface stiffness. However, there was no significant impairment in growth, conidia formation, pathogenicity or susceptibility to various environmental stresses in the Δabmak1 strain.
Conclusion
This study sheds new light on the function of a fungal flavin-dependent monooxygenase, which plays an important role in melanization
Social and environmental transmission spread different sets of gut microbes in wild mice
Gut microbes shape many aspects of organismal biology, yet how these key bacteria transmit among hosts in natural populations remains poorly understood. Recent work in mammals has emphasized either transmission through social contacts or indirect transmission through environmental contact, but the relative importance of different routes has not been directly assessed. Here we used a novel radio-frequency identification-based tracking system to collect long-term high-resolution data on social relationships, space use and microhabitat in a wild population of mice (Apodemus sylvaticus), while regularly characterizing their gut microbiota with 16S ribosomal RNA profiling. Through probabilistic modelling of the resulting data, we identify positive and statistically distinct signals of social and environmental transmission, captured by social networks and overlap in home ranges, respectively. Strikingly, microorganisms with distinct biological attributes drove these different transmission signals. While the social network effect on microbiota was driven by anaerobic bacteria, the effect of shared space was most influenced by aerotolerant spore-forming bacteria. These findings support the prediction that social contact is important for the transfer of microorganisms with low oxygen tolerance, while those that can tolerate oxygen or form spores may be able to transmit indirectly through the environment. Overall, these results suggest social and environmental transmission routes can spread biologically distinct members of the mammalian gut microbiota
- …