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Abstract
The mammalian gut teems with microbes, yet how hosts acquire these symbionts remains poorly understood. Research in
primates suggests that microbes can be picked up via social contact, but the role of social interactions in non-group-living
species remains underexplored. Here, we use a passive tracking system to collect high resolution spatiotemporal activity data
from wild mice (Apodemus sylvaticus). Social network analysis revealed social association strength to be the strongest
predictor of microbiota similarity among individuals, controlling for factors including spatial proximity and kinship, which
had far smaller or nonsignificant effects. This social effect was limited to interactions involving males (male-male and male-
female), implicating sex-dependent behaviours as driving processes. Social network position also predicted microbiota
richness, with well-connected individuals having the most diverse microbiotas. Overall, these findings suggest social contact
provides a key transmission pathway for gut symbionts even in relatively asocial mammals, that strongly shapes the adult gut
microbiota. This work underlines the potential for individuals to pick up beneficial symbionts as well as pathogens from
social interactions.

Introduction

Symbiotic microbes are increasingly recognised as key
modulators of host phenotypes. This is particularly true for
the mammalian gut microbiota, whose metabolism is inti-
mately entwined with that of the host. Among their many
roles in host physiology, mammalian gut microbes

modulate host energy metabolism [1, 2], regulate fat accu-
mulation and thermal homoeostasis [3], and provide pro-
tection against pathogenic infection [4, 5]. They are also in
constant dialogue with the host immune system, activating
innate immune responses and tuning acquired immune
responses to distinguish enemies from allies [6–8]. As such,
alterations to these microbial communities can have sig-
nificant impacts on host health and have been associated
with major metabolic and immune-related health conditions
in humans [1, 9, 10].

Despite gut microbiota’swell-established role in host biol-
ogy, we know surprisingly little about the forces that shape
microbiota composition within and between individuals in
nature. Community composition is notoriously variable among
individuals, and is affected by a number of processes that can
be viewed within a metacommunity framework [11]: trans-
mission processes (microbial dispersal) first determine which
microbes colonise an individual host. Subsequently, aspects of
the nutritional and immunological environment inside the host
(e.g. host diet, genetics), as well as ecological interactions with
resident microbes, selectively filter colonising microbes that
can persist and thrive. In mammals, the microbiota is initially
established through maternal transmission at birth [12], with
community composition then further shaped by transmission
from family members and the broader environment [13–15] as
well as selective processes within the host [16].
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A key question is to what extent ongoing transmission
throughout life shapes the microbiota. Accumulating evi-
dence suggests the gut microbiota is affected by a host’s
environment, such as diet [17, 18] and contact with soil
[15, 19, 20]. The microbiota can also be shaped by a host’s
social environment, since a special form of microbial
transmission can occur through social contact. Intimate
social contact, such as the many forms of prosocial touch
common in mammals (e.g. grooming, licking, huddling),
may function as an important transmission route for
microbes. This is particularly true for microbes not easily
transmitted via the environment, including strict anaerobes
and non-spore-forming bacteria [21]. Moreover, if less
transmissible microbes are more likely to positively impact
host fitness [22], social interactions could constitute a key
pathway (alongside vertical transmission) by which sym-
bionts of high functional significance are transmitted in
mammals. Laboratory rodent studies have repeatedly shown
that cohousing drives convergence in microbiota composi-
tion [23–25], indicating that social interaction and close
proximity facilitate microbial transmission under captive
conditions.

In highly social group-living mammals, the host social
environment seems to have important effects on the gut
microbiota. Social group membership has been shown to
predict gut microbiota composition in several species of
primates [26–31] and other group-living mammals [32–34].
Social group effects also occur in humans, as unrelated
individuals living in the same household were found to have
a more similar microbiota than relatives living in different
households [35]. However, the mechanisms underlying
these observations remain unclear, and may include not
only direct social transmission but also shared environ-
mental exposures like diet. In some cases, social group
effects on the microbiota have been found while controlling
for kinship or shared diet, supporting the idea that social
transmission homogenises the gut microbiota. For example,
sifakas (Propithecus verrauxii) were found to have a social
group-specific gut microbiota composition that was not
explained by diet similarity, or habitat overlap, nor genetic
relatedness [28]. Further support comes from individuals
observed to switch social groups, for example immigrant
male baboons [36], whose microbiota composition con-
verged on that of their new social group.

Some evidence also suggests social interactions affect
microbiota similarity at a dyadic level, within groups or
populations. Several primate studies have shown the
intensity of social interaction between group members to
predict similarity in their microbiota [26–28, 30]. Baboons
that groomed each other more were found to share more gut
microbes, and these shared bacteria were enriched in
anaerobic and non-spore-forming taxa [26]. Similar patterns
were found in humans, with couples who reported having a

“physically close relationship” sharing more gut microbes
than less close couples or friends [37]. However, socially
interacting primates often experience strong overlap in their
environments, and thus it remains difficult to distinguish
social transmission from shared environmental exposures
[21]. Species that are not group-living (sensu Wilson, [38])
arguably provide more powerful systems in which to clearly
distinguish effects of social interaction from confounding
shared environmental exposures, as social interactions are
more limited in time and space. However, the role of social
transmission in shaping the microbiota in such species has
yet to be explored.

Here, we use wild mice as a model system (wood mice,
Apodemus sylvaticus) to assess how social interactions
shape gut microbiota similarity among sympatric indivi-
duals, in comparison to effects of host kinship, spatial
proximity, and other factors. These mice are not group-
living, but can be considered a semi-social species, with the
propensity to co-nest in underground burrows varying
seasonally and among individuals [39, 40]. Individuals have
stable, partially overlapping home ranges, and yet vary in
their level of social contact, making them a particularly
suitable species in which to study social transmission.
Social behaviours that might facilitate gut microbe trans-
mission in wood mice include contact behaviours such as
allogrooming [41], huddling [42], nest-sharing [40] or
aggressive interactions [41]. Transmission could also occur
through non-contact social behaviours, such as scent-
marking and investigation of faecal cues [43, 44], or pos-
sibly coprophagy as seen in other mouse species, though
coprophagy has not been documented in wood mice to date.
Using a tracking system based on passive radio-frequency
identification (RFID) tags, we intensively followed a
population of mice for one year and used social network
analyses to test two specific hypotheses about social trans-
mission of microbiota. First, we test the prediction that if
social interactions drive microbial transmission, dyadic
microbiota similarity will be positively predicted by proxi-
mity in the social network, independent of other potential
confounders. Second, individuals that are more connected
in the social network are predicted to have higher micro-
biota diversity, as they are exposed to more extensive social
transmission.

Materials and methods

Field data collection

Data were collected over a one-year period (Nov 2014–Dec
2015) from a wild population of wood mice (Apodemus
sylvaticus) in a 2.47 ha mixed woodland plot (Nash’s
Copse) at Imperial College’s Silwood Park campus, UK
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(Fig. S1A). Live traps were set for one night every
2–4 weeks in an alternating checkerboard design, to ensure
even coverage. At first capture, all mice were injected
subcutaneously with a passive integrated transponder tag
(PIT-tag) for permanent identification. At each trapping,
demographic data on captured animals was recorded and
samples for gut microbiota analysis and mouse genotyping
collected (see Appendix 1 in Supplementary material).

Data on rodent space use and social associations was
collected in parallel to trapping using a set of nine custom-
built PIT-tag loggers (described in [45] and Appendix 2;
Figs. S1), distributed across the trapping grid. Loggers
consisted of a box with entrance tubes, that recorded the
time-stamped presence of any rodent that entered. Loggers
were rotated systematically around the plot throughout the
study period, using a sampling design that ensured even
spatial coverage, with each 100m2 grid cell covered on
average 5.49 (SD 1.61) times (Fig. S1C). Between logging
nights, loggers were thoroughly cleaned with 70% ethanol
(see Appendix 2). After data cleaning and filtering (Fig S2),
83 of the 93 mice tagged during study period were present
in the logger data.

Kinship analysis

To derive estimates of host genetic relatedness, ear tissue
samples were used to genotype all captured mice at eleven
microsatellite loci (Tables S1 and S2; detailed in [39])
and build a pedigree in COLONY 2.0.6.5 [46]. Full details
of genotyping methods and pedigree reconstruction are
provided in Appendix 3. After sample failures, genetic
relatedness could be inferred for 70 of the 83
monitored mice.

Constructing social networks

All analyses were conducted in R version 3.6.1 (R-Core-
Team 2019). To capture patterns of spatiotemporal
coincidence among wood mice, social networks were con-
structed from logger data using the package asnipe [47] and
plotted using igraph [48]. Individual mice were nodes, and
edges described the number of instances two individuals
were observed associated, i.e. observed at the same logger
during the same night (12 h period, 6 pm to 6 am), within a
specific time window of each other. To measure association
strength, we used an adjusted version of the Simple Ratio
Index (SRI), that accounted for variable overlap in indivi-
dual lifespans (i.e. time between first and last logger
observation) [49], hereafter “Adjusted SRI”. Adjusted SRI
is defined as follows for two individuals, A and B:

I ¼ X

X þ yAB þ yA þ yB½ �

where X is the number of instances (night-location
combinations) in which A and B were observed associated
(at the same location within a specified time window of
each other), yAB is the number of instances in which A and B
were both observed, but not associated, yA and yB are the
number of instances in which both were known to be alive
but only A or B were observed respectively. By taking
lifespan overlap into account we could incorporate data
from all 83 individuals across the entire year into one static
social network.

To examine how the definition of social association
might affect social network-microbiota relationships, we
constructed a series of networks using increasingly intimate
definitions of social association, by applying a sliding time
window criterion of variable length to define social asso-
ciation (i.e what counts as X in the formula), from 12 h (as
above) down to a 2 min period (12 h, 4 h, 1 h, 30 min,
10 min, 2 min). We also calculated a parallel set of networks
with binary social association indices (BI), where ‘1’ indi-
cated the dyad were observed associated at least once, and
‘0’ indicated they were not.

Gut microbiota characterisation

The gut microbiota was successfully characterised from 239
faecal samples belonging to 75 individual wood mice
(covering 90% of the monitored mice, mean= 3.2 samples/
mouse, range= 1–9). Full details of library preparation,
sequencing and bioinformatics are given in Supplementary
Material (Appendix 4; Figs. S3–S5). Briefly, microbiota
profiling involved amplicon sequencing of the 16S rRNA
gene (V4-region). Sequence data were processed through
the DADA2 pipeline v1.6.0 [50], to infer amplicon
sequence variants (ASVs) and taxonomy assigned using the
GreenGenes Database (Consortium 13.8). Using package
phyloseq [51], ASV-counts were normalised to proportional
abundance within each sample [52] and singleton ASVs as
well as those belonging to non-gut microbial taxa (Cyano-
bacteria, Mitochondria) were removed. Lastly, we used
package iNEXT [53] to estimate asymptotic richness and
Shannon diversity for each sample.

Statistical analyses

To describe compositional microbiota variation, package
vegan [54] was used to calculate Jaccard distances and
Bray–Curtis dissimilarities among samples (Fig. S6). We
used the Jaccard Index (1-Jaccard distance, the proportion
of shared ASVs between sample pairs) as our primary
measure of microbiota similarity, as we considered this
metric most relevant for investigating microbial transmis-
sion among hosts. However, for robust inference, we
repeated key analyses using Bray–Curtis dissimilarity (an
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abundance-weighted metric less sensitive to potential
sequencing artefacts), and repeated analyses on both Jac-
card Index and Bray–Curtis dissimilarity with a rarefied
dataset, to confirm beta diversity results were not affected
by read depth variation among samples.

General predictors of gut microbiota composition

We performed permutational analysis of variance (PER-
MANOVA) in vegan to (1) test the repeatability of gut
microbiota composition among individuals sampled multi-
ple times, (2) identify non-social effects on the microbiota
to be controlled for in subsequent analyses and (3) estimate
how much individual variation was independent of these
covariates. We tested effects of time (month, as a factor),
host age (juvenile/adult), sex, plot region, habitat type, and
individual identity on Jaccard distance. Plot region and
habitat type for each individual were defined from logger
data, as the most common logger territory (no.1–9) and
habitat type (rhododendron, open woodland/bluebell, bam-
boo or mixed; Fig. S1A) they were detected in.

Associations between social association strength
and microbiota similarity

To test whether dyadic microbiota similarity was predicted
by social association strength, we performed Bayesian
regression models in package brms [55]. These models are
well-suited for this as they permit random effect structures
able to account for the types of dependence inherent to
dyadic data, and repeat sampling of individuals [56]. We
constructed brms models that included all dyadic sample
comparisons except within-individual comparisons. Micro-
biota similarity (Jaccard Index) was used as the response,
with social association strength (adjusted SRI, or BI index)
as the main predictor. As the Jaccard Index is a proportion,
a logit link function was used. To control for potential
confounding variables as far as possible, we fitted several
dyadic covariates: spatial distance between hosts, sampling
interval (time in days between samples taken), kinship, sex
and age similarity (0/1 for different/same). Spatial distance
was calculated as the distance between individuals’ mean
spatial coordinates from logger records (minimum 34 logger
records per mouse). All covariates either naturally ranged
from 0 to 1 or were scaled to do so, to make model esti-
mates for all terms comparable. To control for non-
independence in the dataset arising from a dyadic
response variable and repeat samples per mouse, both the
model intercept and slope (social association strength effect)
were allowed to vary as defined by two random effects: (i) a
multi-membership random effect capturing the individuals
in each dyad (Individual A + Individual B) and (ii) a multi-

membership random effect capturing the samples in each
dyad (Sample A + Sample B).

To test for sex-dependence in the effect of social asso-
ciation (e.g. arising from specific sexual behaviours) on
the microbiota, the main model (12 h edge definition) was
also run including dyad sex category (male-male, male-
female or female-female) and its interaction with social
association strength. In this model, only a multi-
membership random intercept was fitted (not a random
slope) to help ensure there was enough power to estimate
the interaction effect. Finally, to check our results were
robust to the chosen statistical approach, we confirmed key
results with two alternative statistical modelling frame-
works: (1) MCMCglmm, an alternative R package for
Bayesian regression [57] and (2) a matrix permutation-
based method common in social network analyses, Multiple
Regression Quadratic Assignment procedure (MRQAP;
[58]), with a data subset including one randomly selected
sample per individual (Appendix 5; Fig. S7).

Social network position and microbiota diversity

We hypothesised that an individual’s social network posi-
tion might affect gut microbiota (alpha) diversity.
Depending on the transmission ecology, different types of
network position might best predict diversity. To explore
this, we calculated six different metrics of network position,
that capture different aspects of social connectedness
(Fig. 1). If the sheer amount of social interaction or number
of social partners can diversify the microbiota, we expect
diversity to be predicted by measures of general network
centrality (Fig. 1). Alternatively, if diversity is driven by the
distinctness of transmission sources, and if this is reflected
in their social distance, we expect diversity to be predicted
by measures of bridge-type centrality (Fig. 1). To test the
relationship between each centrality measure and gut
microbiota diversity, we used Bayesian regression models
in MCMCglmm with either asymptotic ASV richness or
asymptotic Shannon diversity as the response. We first
explored how several covariates predicted diversity: host
age, sex, sampling month (as a factor), plot region, habi-
tat type, read count, and PCR plate (4-level factor), and
simplified models to include only covariates with p < 0.1.
We then added into this model one of our six measures of
social centrality (Fig. 1), derived from either the 12 h or 2
min network. Individual identity and PCR plate were fitted
as a random factors. A node permutation test was used to
verify that significant effects were not driven by network
structure. The observed posterior mean estimates for net-
work position were compared with those derived from 1000
models in which network positions were randomised across
individuals.

2604 A. Raulo et al.



Identifying which bacterial taxa associate with
social interaction

To identify candidate socially transmitted bacterial taxa, we
tested how each bacterial family affected the strength of
correlation between social association strength and micro-
biota similarity. We recalculated the Jaccard Index
excluding each bacterial family in turn, then compared
(both 12 h and 2 min) social network effect sizes and
credible intervals from MCMCglmm models using these
indices (full model details in Appendix 5).

Results

Factors predicting gut microbiota composition

The mean Jaccard Index across the whole population of
mice was 0.17 (sd= 0.6). In a marginal PERMANOVA on
data from repeat-sampled mice, individual identity
explained 33% compositional variation in the microbiota,
while temporal fluctuations (month) explained 6%, with
similar results for both Jaccard Index and Bray–Curtis
dissimilarity (Table S3, See Fig. S8 for more thorough

description of the temporal fluctuations). When other
individual-level attributes were included (age, sex, plot
region and habitat type), 27% variation in microbiota
composition remained attributable to individual identity
(Table S4), indicating the microbiota showed consistent
individual variation that was not explained by measured
host factors. No other variables predicted microbiota com-
position, except for a weak effect of habitat type (marginal
PERMANOVA on data with one sample per individual,
Table S5). Among the subset of hosts (70 of 75) with
kinship information, kinship and microbiota similarity
(Jaccard Index) were unrelated (Mantel test: r= 0.001,
p= 0.520).

Wood mouse social structure

The wood mouse social network showed marked variation
in edge weights (social association strength) but no clear
clustering (Fig. 2). Social association strength did not differ
significantly among female-female, female-male and male-
male pairs (Table S6). Global network density declined as
increasingly intimate edge definitions were used (Fig. 2).
The correlation among social networks with different edge
definitions also decayed as the difference in time windows

Fig. 1 Six measures of network centrality and interpretation of a positive relationship with microbiota diversity. Images depict focal
individuals (red circles) whose social interactions (lines) with other individuals (black circles) give them a high value of each centrality metric.
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increased (Table S7). As expected, social association
strength was to an extent predicted by spatial proximity in
all networks (MRQAP p < 0.001, Table S6), though this

spatial effect weakened as more intimate edge definitions
were used (Fig. S9, Table S6). Even in the least intimate
(12 h) social network, mice clearly did not solely associate

Fig. 2 Wild wood mouse social networks with different edge definitions (2min-12h), plotted in either social space (A–D) or geographical
space (E–H). In A–D networks are plotted using a standard weighted spring layout that minimises the sum of edge lengths and overlap across the
network (igraph, [43]), and in B–H mice are positioned at their mean spatial coordinates recorded from logger data, superimposed on a habitat map
of the study area. Background colours reflect habitat types (dark green= rhododendron, light green= bamboo, blue= bluebell, white= open
woodland). Red and blue circles represent female and male mice respectively, and line thickness is proportional to social association strength.
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with their nearest neighbours, as distances to the closest
social partner (mean 25.6 m; sd= 15.3 m) were on average
over three times greater than those to the nearest neighbour
(mean= 8.4 m; sd= 5.5 m). Some strong social associa-
tions were observed between individuals whose mean spa-
tial locations were over 60 m apart (Fig. 2E–H). As such,
the social structure of this population was only partially
determined by spatial location, and this spatial influence on
social contact was weakest in the 2 min network.

Social association strength predicts microbiota
similarity

Among pairs of individuals, the strength of social associa-
tion strongly and positively predicted similarity in gut
microbiota composition (in 12 h network: posterior mean
0.78, CI= 0.34–1.24; Fig. 3). Specifically, the proportion of
ASVs shared within dyads (Jaccard Index) was positively
predicted by their social association strength in all net-
works, even when controlling for effects of sex, age, kin-
ship, sampling interval, and spatial distance (Table S8).
Other variables also predicted microbiota similarity,
including the spatial distance between hosts (posterior mean
−0.08, CI=−0.12 to −0.04) and the time interval
over which they were sampled (posterior mean −0.46,
CI=−0.48 to −0.43), but the size of these effects was
consistently smaller than that of social association strength
(Fig. 3, Table S8). Consistent results were obtained
with models using alternative statistical frameworks,
when using Bray–Curtis dissimilarity, and when using
indices derived from a rarefied microbiota ASV dataset
(Appendix 5; Tables S9 and S10). Even binary social

networks predicted microbiota similarity (Table S11), albeit
less strongly than association strength.

The relationship between social association strength and
microbiota similarity became stronger as networks with
increasingly intimate edge definitions were analysed
(Fig. 4A), while spatial and temporal effects remained
comparable across networks (Table S8). As such, the effect
of social association increased from 1.7 times as large as the
next strongest (sampling interval) effect in the 12 h network,
to over 13 times as strong in the most intimate (2 min)
network. Accordingly, the mean predicted Jaccard Index
among mice with a weak (0 ≤Adjusted SRI < 0.1) vs. strong
(SRI > 0.9) level of social association increased mod-
estly from 0.23 to 0.30 in models using the 12 h network,
but approximately doubled from 0.29 to 0.59 in models
using the 2 min network (Fig. 4C). Since more intimate
networks also had fewer edges (i.e. lower density, Fig. 2),
we also tested whether variation in network density alone
might drive this trend. To do this, we ran a set of null
models (described fully in Appendix 6) in which the least
intimate (12 h) network was thinned to have the same
number of edges as seen in each real network. In contrast to
the real networks, social network effect sizes remained
relatively constant in null models using artificially thinned
networks (Fig. 4B).

Sex-dependent effects of social association on
microbiota similarity

We further found that the effect of social association
strength on microbiota similarity depended on the sex of
interacting individuals. In a model including an interaction
between social association strength and dyadic sex combi-
nation, social association strength predicted microbiota
similarity strongly in male-male pairs (posterior mean 0.28,
CI= 0.01–0.56; Table S12) and male-female pairs (pos-
terior mean 0.30, CI = 0.04–0.56) but not significantly in
female-female pairs (posterior mean 0.10, CI −0.15 to 0.35;
Fig. 5, Table S12).

Social network position and microbiota diversity

Both microbiota diversity metrics (richness and Shannon
diversity) were predicted by plot region, habitat type, and
month (Table S13). Both diversity estimates were also
associated with PCR plate, and richness was also predicted
by read count. Four measures of network position positively
predicted gut microbiota richness: degree and information
centrality predicted richness in both 12 h and 2 min net-
works, and betweenness and bridge propensity additionally
predicted richness in the 2 min network (Table 1). No
measures of network position predicted Shannon diversity
when controlling for covariates (Table S14).

Fig. 3 Social association strength predicts gut microbiota similar-
ity more strongly than spatial distance, kinship and other effects.
Effect size estimates (points) and their 95% credible intervals
(coloured lines) are plotted from Bayesian regression (brms) models
with pairwise microbiota similarity among hosts (Jaccard Index) as the
response. Where credible intervals do not overlap zero, a variable
significantly predicts microbiota similarity. Social association strength
in the 12 h network has a strong positive effect on microbiota simi-
larity, that is larger than that of other variables.
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Identifying bacterial taxa that drive social network
effects

The social network effect we identified did not depend
entirely on any single bacterial family, since it remained
statistically significant in all models where a single bacterial
family was excluded (Fig. 6). For some of the more diverse

bacterial families, effect size did shift slightly when they
were excluded, but not in a way that directly related to their
diversity. Excluding the family S24-7 made the social net-
work effect somewhat weaker and almost nonsignificant
when using the most intimate (2 min) edge definition (tak-
ing the p.MCMC-value from p < 0.001 to p= 0.012), a
pattern that was similar but weaker in the 12 h network.
Conversely, excluding Lachnospiraceae, the most diverse
family, if anything slightly strengthened the social network
effect in both networks (Fig. 6). Excluding Lactobacillaceae
also slightly weakened the social network effect size, but
only when using the less intimate (12 h) edge definition.

Discussion

Recent studies have shown that the social environment can
strongly affect gut microbiota composition in group-living
species, such as primates living in large groups [26, 29] or
smaller family units [27, 28, 30]. Here, we provide the first
evidence for similar effects in a non-group-living species. The
social network of wood mice showed no clear clustering, as
those of group-living species do. Yet, the social network
strongly predicted similarity among individuals in gut micro-
biota composition, and this effect was far stronger than effects
of spatial or temporal proximity, kinship, and similarity in
other host attributes (age, sex). In short, mice who were
observed at the same location within the same short timeframe,
shared more gut bacterial taxa than mice who were observed

Fig. 4 Social association strength predicts microbiota similarity
more strongly in networks that use a more intimate edge defini-
tion. A The effect of social association strength on microbiota simi-
larity (Jaccard Index) is stronger in networks with more intimate edge
definitions. Social network effect sizes (estimated slope of the rela-
tionship between social association strength and microbiota similarity,
the Jaccard Index) and their 95% credible intervals are plotted from
Bayesian regression (brms) models that included the same covariates
shown in Fig. 3. B Differences in effect size across networks are not

due to variation in network density, as effect size did not change in
null models where the 12 h network was artificially thinned by
removal of the weakest edges to have the same density as each real
network of differing edge definition. C The distribution of predicted
microbiota similarity (Jaccard Index) values in pairs of mice who were
observed socially associated either never (white, SRI= 0), rarely (light
grey, 0 < SRI ≤ 0.1) or often (SRI > 0.9, dark grey) in either 12 h or 2
min social networks (columns).

Fig. 5 Social association strength predicts microbiota similarity
only among dyads involving males. Estimated social network effects
on the microbiota (slope of the relationship between social association
strength and Jaccard Index) and 95% credible intervals are plotted
from a Bayesian regression (brms) model using the 12 h social network
that included an interaction term between social association strength
and dyad sex-category (male-male, male-female or female-female).
Females are depicted in red and males in blue respectively. Social
association strength has a significant positive association with micro-
biota similarity in dyads involving males, but not in female-
only dyads.
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together less often. This social effect was sufficiently strong
that mice who were observed together even once shared more
bacterial taxa than mice who were never observed together.
This co-occurrence can be seen as a proxy for a more nuanced
social relationship, perhaps involving close physical contact

behaviours like allogrooming or huddling, that serve as routes
for social microbiota transmission.

Social effects on the microbiota can result from social
partners having more similar environmental exposures, and
previous studies have struggled to separate such influences

Table 1 Social network centrality metrics predict individual gut microbiota richness.

12 h network 2 min network

Posterior mean (95% CI) p.MCMC p.perm Posterior mean (95% CI) p.MCMC p.perm

Degree 0.005 (0.001, 0.009) 0.042 0.004 0.02 (0.001, 0.041) 0.042 0.004

Weighted degree 0.038 (−0.097, 0.180) 0.556 n/a −0.012 (−0.157, 0.118) 0.832 n/a

Eigenvector centrality 0.119 (−0.010, 0.262) 0.092 n/a −0.0073(−0.147, 0.139) 0.968 n/a

Betweenness 0.008 (−0.087, 0.109) 0.866 n/a 0.018 (0.004, 0.033) 0.016 0.002

Information centrality 0.017 (0.001, 0.035) 0.050 0.004 0.021 (0.004, 0.039) 0.024 0.004

Bridge propensity −0.007 (−0.236, 0.189) 0.500 n/a 0.017 (0.002, 0.031) 0.020 0.004

Posterior means and 95% credible intervals are shown from MCMCglmm models including the covariates shown in Table S13 and a single
centrality metric. Significant effects are shown in bold. Significance was inferred from two p values: If the Bayesian model p value calculated from
posterior distribution (p.MCMC) < 0.05, the result was further tested by calculating a permutational p value (p.perm). p.perm represents the
probability of generating the observed posterior mean given the data, based on 1000 node-based permutations in which the centrality values of
nodes are randomly shuffled before running the model.

Fig. 6 The influence of specific bacterial families on social network
effect size. Social network effect sizes (slope of the relationship
between social association strength and microbiota similarity, Jaccard
Index) and 95% credible intervals are plotted from 146 Bayesian
regression (MCMCglmm) models, in which a single bacterial family

was excluded from the calculation of microbiota similarity. Effects are
plotted against the species richness of each dropped family (logged
number of ASVs, y-axis). Results are shown from models using A the
least intimate, 12-h network and B the most intimate, 2-min network.
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from the effect of social transmission. Here, several findings
suggest the social effect we see is likely driven by social
transmission rather than shared exposures. First, we find a
strong social network effect even when controlling for host
spatial and temporal proximity as well as kinship, reducing
the likelihood it is driven by shared traits or exposure to
microbes from common environmental sources, such as diet
or soil. Second, more intimate definitions of social association
(mice co-occurring within a two-minute period, rather than
simply during the same night) predicted microbiota similarity
more strongly, suggesting close interaction between hosts is
important in driving the effect. Finally, the strength of the
social network effect varied according to which bacterial
families were included in the analysis, in ways that are con-
sistent with a social transmission explanation. When members
of the anaerobic, non-spore-forming bacterial family S24-7
(Bacteroidales, Muribaculaceae; [59]) were excluded, the
social network effect weakened. Conversely, when members
of the spore-forming family Lachnospiraceae were excluded
(which are able to survive outside the host and have been
found in soil; [60, 61]), the social network effect became
slightly stronger. These observations suggest that microbial
transmission during close host contact is an important driver
of the social effect, allowing hosts to share microbes that
cannot persist in the external environment. Previous work in
hominids has also shown high host fidelity and even cospe-
ciation with the host among members of the Bacteroidales,
while Lachnospiraceae members showed low host fidelity and
frequent host switches [62]. Taken together, these findings are
consistent with the idea that microbes unable to persist outside
the host are more reliant on transmission by close contact (e.g.
social behaviour or birth), and perhaps in part because of this,
may evolve increased host specificity.

Besides shared environmental exposures, another factor
that could have contributed to the social effect we observe
here is “artificial” transmission of microbes at the logger
boxes we used to monitor mouse behaviour. While impos-
sible to rule out entirely, we think logger contamination is
unlikely to have played a significant role in generating the
social effects observed here, for several reasons. First,
logger boxes were thoroughly sterilised between logging
nights (see Appendix 2). Second, our data suggested mice
did not spend long periods of time in logger boxes (mean
minutes logged per mouse per night when observed was 3.8
+/− sd 2.1), nesting inside loggers was never observed, and
faecal pellets inside were also rare. Finally, and importantly,
the observed effect of social association on the microbiota
was sex-dependent, which is inconsistent with transmission
occurring solely at loggers. Specifically, social association
strengths derived from logger co-occurrence data were
similar in magnitude for all pair types, yet only significantly
predicted microbiota similarity for dyads involving males,
but not female-female pairs. This implies that the effect of

social association on microbiome similarity is driven by
behaviours outside logger boxes that are differentially
expressed between the sexes.

Indeed, our finding of a sex-dependent effect indicates
the link between social interactions and the gut microbiota
might be more nuanced than previously thought. It suggests
that behaviours which vary in type, frequency or strength
according to the sex of social partners are involved in gut
microbial transmission. In wood mice, home range overlap
is much greater among male-female and male-male dyads
than among female-female dyads [39, 63] and observations
in captivity suggest allogrooming may be more common
between males and females [41]. Limited data has also
suggested that co-nesting may be more common for male-
female than same-sex pairs [40]. Female wood mice are
therefore expected to socially interact with one another less
often, and female-female links in our social networks may
reflect actual social contact to a lesser extent than male-
female and male-male links. In line with our findings, a
recent study found that interactions involving males were
more important for the transmission of a herpesvirus
pathogen in wood mice [64]. It is therefore possible that in
this species, the spread of infectious agents more broadly is
dominated by interactions involving males. Our findings
seem to constitute a mirror image of the common trend in
primates, where female-female social bonds are often phy-
sically closer than male-male bonds [65], and where social
interactions among females have been shown to predict
microbiota similarity more strongly than those among males
[66, 67]. In pair-bonding species like humans, the strongest
microbiota-homogenising effects of social interaction may
occur in close sexual relationships [37]. Interestingly, in
wood mice (which do not pair-bond), we find no evidence
that male-female associations predict microbiota similarity
more strongly than male-male associations. This might be
because sexual relationships are not well-captured by our
measure of social association, or because other social
behaviours prevalent among males are more important in
transmission of gut microbes than behaviours specific to
mixed-sex pairs.

In addition to social contact homogenising the gut
microbiota, we also found that the diversity of an indivi-
dual’s microbiota is predicted by their position in the social
network. Individuals with a central position in the social
network, particularly with many contacts or in positions that
bridged different parts of the network, carried more bac-
terial taxa in their gut. Of all network metrics, the strongest
predictor of microbiota richness was the number of others
an individual was connected to in the network (their
degree). Similar trends were previously reported in sifakas
[28] and chimpanzees [29], and humans self-reporting more
social relationships also had greater gut microbial diversity
[67]. However, effects in the opposite direction have also
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been found. In barn-swallows, the extent of same-sex social
interaction was negatively correlated with microbiota
diversity [68] and in red-bellied lemurs, the most sociable
individuals had the lowest gut microbiota diversity [27].
Perhaps a more careful consideration of social connected-
ness patterns may help in understanding how sociability
might shape microbiota diversity. For example, the sheer
amount of social interaction (the definition of sociability in
[27]) might be less important in diversifying the microbiota
than the number of transmission sources (the definition of
sociability in [28]). We find that social interactions predict
both alpha- and beta-diversity of the gut microbiota – social
network position predicted community richness, and social
partners had more similar community compositions. Meta-
community theory predicts that connectivity among local
communities (hosts) is critical to explaining overall patterns
of diversity. On average, dispersal (microbial transmission
through host social interaction) is expected to diversify local
communities up to a point, by providing novel colonists and
rescuing rare species from extinction, but then cease to be
enriching as high dispersal begins to homogenise commu-
nities and the best competitors at a regional scale come to
dominate and exclude others [69]. In other words, local
diversity is expected to be maximal at intermediate average
levels of dispersal [70]. If social connectivity is uneven
among hosts (as is common in social networks, including
ours), a metacommunity could also maintain both diversi-
fying flux and a level of local community uniqueness, that
allows competing microbial species to coexist within the
metacommunity. In such a network, hosts that interact with
many others, especially those likely to harbour distinct
microbes, may experience the most diversifying effects of
social transmission, compared to those interacting with the
same or similar individuals. Consistent with this idea, we
found that hosts interacting with others from different parts
of the network (with high bridge-type centrality) had more
diverse microbiotas, while this was not true for highly
connected individuals with more interconnected partners
(i.e. with high eigenvector centrality).

Overall, our findings suggest the social environment is an
underestimated force shaping the gut microbiota among
free-living animals. An important future question then is
what role this “social microbiome” [21] plays in host fit-
ness. Besides the pathogenic challenges arising from
social contact, which have been acknowledged for some
time [71–73] there may also be benefits. Our results suggest
social transmission affects microbiota attributes that have
potential relevance for host health: microbiota diversity,
similarity among interacting individuals, and transmission
of bacteria that cannot readily persist outside the host.
While exact relationships between microbiota diversity and
beneficial functions remain poorly understood [74, 75], a
diverse microbiota might bring benefits in terms of resisting

pathogenic infection [11, 76] or increasing metabolic
capacity [1, 77]. Immunological benefits may also result
from microbiota similarity among closely interacting indi-
viduals. Since symbiotic microbes can be pathogenic in an
unaccustomed individual [78, 79], sharing a set of familiar
microbes with social partners might help maintain diversity,
while minimising the threat of opportunist pathogens
[20, 80]. Lastly, if anaerobic, non-spore-forming microbes
are less likely to be harmful [22] and more likely to be
beneficial, social interactions may facilitate the sharing of
functionally important, and perhaps more host-specialist
symbionts, such as members of the Bacteroidales [62, 81].
Since such benefits of social behaviour could be present
even without any others (e.g. benefits of cooperative
behaviour), it is possible that the social transmission of gut
microbes could represent an underappreciated force in the
early evolution of sociality.
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