50 research outputs found

    Ocean tides and Heinrich events

    Full text link
    Climate varied enormously over the most recent ice age1 — for example, large pulses of ice-rafted debris2, originating mainly from the Labrador Sea3, were deposited into the North Atlantic at roughly 7,000-year intervals, with global climatic implications3. Here we show that ocean tides within the Labrador Sea were exceptionally large over the period spanning these huge, abrupt ice movements, which are known as Heinrich events. We propose that tides played a catalytic role in liberating iceberg armadas during that time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84375/1/nature_tidesheinrich.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/84375/2/432460a-s1.do

    Društveno-ekonomski aspekti učiteljstva

    Get PDF
    U radu se prvo definira učiteljstvo kao profesija, zajednički stručni naziv – učitelj (i za učitelja, nastavnika, profesora i stručnog suradnika u školi). Zatim se govori o vrijednosti učiteljske profesije. Slijedi analiza materijalne osnove i financiranja učiteljstva, plaće učitelja i ostala materijalna prava. Potom slijedi prikaz učiteljskih udruga i učiteljske nagrade „Ivan Filipović“. Posebno se obrađuje pitanje – kakvi su učitelji potrebni novoj hrvatskoj školi. Hrvatskoj školi potrebni su sposobni, obrazovni, stručno pedagoško osposobljeni, motivirani, materijalno situirani, zadovoljni, samostalni, slobodni i demokratski učitelji. Svjetski dan učitelja prigoda je da se sjetimo svoje učiteljice-učitelja, njihovih riječi i djela koja su obilježila naše odrastanje i ostavili duboki trag u našim srcima

    Evidence of an active volcanic heat source beneath the Pine Island Glacier

    Get PDF
    Tectonic landforms reveal that the West Antarctic Ice Sheet (WAIS) lies atop a major volcanic rift system. However, identifying subglacial volcanism is challenging. Here we show geochemical evidence of a volcanic heat source upstream of the fast-melting Pine Island Ice Shelf, documented by seawater helium isotope ratios at the front of the Ice Shelf cavity. The localization of mantle helium to glacial meltwater reveals that volcanic heat induces melt beneath the grounded glacier and feeds the subglacial hydrological network crossing the grounding line. The observed transport of mantle helium out of the Ice Shelf cavity indicates that volcanic heat is supplied to the grounded glacier at a rate of ~ 2500 ± 1700 MW, which is ca. half as large as the active Grimsvötn volcano on Iceland. Our finding of a substantial volcanic heat source beneath a major WAIS glacier highlights the need to understand subglacial volcanism, its hydrologic interaction with the marine margins, and its potential role in the future stability of the WAIS

    Assessing recent trends in high-latitude Southern Hemisphere surface climate

    Get PDF
    Understanding the causes of recent climatic trends and variability in the high-latitude Southern Hemisphere is hampered by a short instrumental record. Here, we analyse recent atmosphere, surface ocean and sea-ice observations in this region and assess their trends in the context of palaeoclimate records and climate model simulations. Over the 36-year satellite era, significant linear trends in annual mean sea-ice extent, surface temperature and sea-level pressure are superimposed on large interannual to decadal variability. However, most observed trends are not unusual when compared with Antarctic paleoclimate records of the past two centuries. With the exception of the positive trend in the Southern Annular Mode, climate model simulations that include anthropogenic forcing are not compatible with the observed trends. This suggests that natural variability likely overwhelms the forced response in the observations, but the models may not fully represent this natural variability or may overestimate the magnitude of the forced response

    Tidally controlled stick-slip discharge of a West Antarctic ice stream

    No full text

    West Antarctic Ice Sheet collapse – the fall and rise of a paradigm

    Get PDF
    It is now almost 30 years since John Mercer (1978) first presented the idea that climate change could eventually cause a rapid deglaciation, or “collapse”, of a large part of the West Antarctic ice sheet (WAIS), raising world sea levels by 5 metres and causing untold economic and social impacts. This idea, apparently simple and scientifically plausible, created a vision of the future, sufficiently alarming that it became a paradigm for a generation of researchers and provided an icon for the green movement. Through the 1990s, however, a lack of observational evidence for ongoing retreat in WAIS and improved understanding of the complex dynamics of ice streams meant that estimates of likelihood of collapse seemed to be diminishing. In the last few years, however, satellite studies over the apparently inaccessible Amundsen Sea sector of West Antarctica have shown clear evidence of ice sheet retreat showing all the features that might have been predicted for emergent collapse. These studies are re-invigorating the paradigm, albeit in a modified form, and debate about the future stability of WAIS. Since much of WAIS appears to be stable, it may, no longer be reasonable to suggest there is an imminent threat of a 5-m rise in sea level resulting from complete collapse of the West Antarctic ice sheet, but there is strong evidence that the Amundsen Sea embayment is changing rapidly. This area alone, contains the potential to raise sea level by around ~1.5 m, but more importantly it seems likely that it could, alter rapidly enough, to make a significant addition to the rate of sea-level rise over coming two centuries. Furthermore, a plausible connection between contemporary climate change and the fate of the ice sheet appears to be developing. The return of the paradigm presents a dilemma for policy-makers, and establishes a renewed set of priorities for the glaciological community. In particular, we must establish whether the hypothesized instability in WAIS is real, or simply an oversimplification resulting from inadequate understanding of the feedbacks that allow ice sheets to achieve equilibrium: and whether there is any likelihood that contemporary climate change could initiate collapse
    corecore