130 research outputs found
www.hicn.org Wartime Institutions: A Research Agenda
agreed to share their views and histories with us. 1 Understanding the choices of civilians and combatants is crucial to our research on civil war and post-conflict reconstruction. We want to know, for example, why people join rebels and militias, why families decide to flee, why combatants kill, how they expand to new territories, or why locals support or boycott counterinsurgency operations. Even when we ask questions about macro-level outcomes such as the duration of war, the stability of peace agreements, or the effects of peace keeping operations, our capacity to theorize and interpret empirical results depends at least partially on our assumptions about how actors make decisions on the ground. Despite the general agreement that institutions—understood as rules that structure human interaction—shape behavior, the study of how civilians and combatants make choices in war zones has, for the most part, neglected the role of wartime institutions. Overlooking institutions in the analysis of individual and collective behavior would be astonishing in any field in political science; however, it has endured in civil war studies perhaps because war is assumed to be chaotic and anarchic, as the widespread use o
Forest carbon sequestration:the impact of forest management
In this chapter, we describe alternative ways in which forests and forestry can help to mítigate climate change, along with the potential impact of these activities. The three carbon storage compartments should be considered inall impact estimates. Carbon content in living biomass is easily estimated via species-specific equations or by applying factors to oven-dry biomass weights (e.g.,lbañez et al.,2002, Herrero et al.,2011,Castaño and Bravo, 2012).Litter carbon content has been analysed in many studies on primary forest productivity, though
information regarding the influence of forest management on litter carbon content is less abundant (Blanco et al., 2006). In the last decade,efforts have been made to assess soil carbon in forests, but studies on the effect of forest management on soils show discrepancies (Lindner and Karjalainen,2007).Hoover (2011), for example,found no difference in forest floor carbon stocks among stands subjected to partial or complete harvest treatments in the United States.Instituto Universitario de Gestión Forestal Sostenibl
Insights into Long-Lasting Protection Induced by RTS,S/AS02A Malaria Vaccine: Further Results from a Phase IIb Trial in Mozambican Children
Background: The pre-erythrocytic malaria vaccine RTS,S/AS02A has shown to confer protection against clinical malaria for at least 21 months in a trial in Mozambican children. Efficacy varied between different endpoints, such as parasitaemia or clinical malaria; however the underlying mechanisms that determine efficacy and its duration remain unknown. We performed a new, exploratory analysis to explore differences in the duration of protection among participants to better understand the protection afforded by RTS,S. Methodology/Principal Findings: The study was a Phase IIb double-blind, randomized controlled trial in 2022 children aged 1 to 4 years. The trial was designed with two cohorts to estimate vaccine efficacy against two different endpoints: clinical malaria (cohort 1) and infection (cohort 2). Participants were randomly allocated to receive three doses of RTS,S/AS02A or control vaccines. We did a retrospective, unplanned sub-analysis of cohort 2 data using information collected for safety through the health facility-based passive case detection system. Vaccine efficacy against clinical malaria was estimated over the first six-month surveillance period (double-blind phase) and over the following 12 months (single-blind phase), and analysis was per-protocol. Adjusted vaccine efficacy against first clinical malaria episodes in cohort 2 was of 35.4% (95% CI 4.5-56.3; p = 0.029) over the double-blind phase and of 9.0% (230.6-36.6; p = 0.609) during the single-blind phase. Conclusions/Significance: Contrary to observations in cohort 1, where efficacy against clinical malaria did not wane over time, in cohort 2 the efficacy decreases with time. We hypothesize that this reduced duration of protection is a result of the early diagnosis and treatment of infections in cohort 2 participants, preventing sufficient exposure to asexual-stage antigens. On the other hand, the long-term protection against clinical disease observed in cohort 1 may be a consequence of a prolonged exposure to low-dose blood-stage asexual parasitaemia
Protective Immunity Induced with the RTS,S/AS Vaccine Is Associated with IL-2 and TNF-α Producing Effector and Central Memory CD4+ T Cells
A phase 2a RTS,S/AS malaria vaccine trial, conducted previously at the Walter Reed Army Institute of Research, conferred sterile immunity against a primary challenge with infectious sporozoites in 40% of the 80 subjects enrolled in the study. The frequency of Plasmodium falciparum circumsporozoite protein (CSP)-specific CD4+ T cells was significantly higher in protected subjects as compared to non-protected subjects. Intrigued by these unique vaccine-related correlates of protection, in the present study we asked whether RTS,S also induced effector/effector memory (TE/EM) and/or central memory (TCM) CD4+ T cells and whether one or both of these sub-populations is the primary source of cytokine production. We showed for the first time that PBMC from malaria-non-exposed RTS,S-immunized subjects contain both TE/EM and TCM cells that generate strong IL-2 responses following re-stimulation in vitro with CSP peptides. Moreover, both the frequencies and the total numbers of IL-2-producing CD4+ TE/EM cells and of CD4+ TCM cells from protected subjects were significantly higher than those from non-protected subjects. We also demonstrated for the first time that there is a strong association between the frequency of CSP peptide-reactive CD4+ T cells producing IL-2 and the titers of CSP-specific antibodies in the same individual, suggesting that IL-2 may be acting as a growth factor for follicular Th cells and/or B cells. The frequencies of CSP peptide-reactive, TNF-α-producing CD4+ TE/EM cells and of CD4+ TE/EM cells secreting both IL-2 and TNF-α were also shown to be higher in protected vs. non-protected individuals. We have, therefore, demonstrated that in addition to TNF-α, IL-2 is also a significant contributing factor to RTS,S/AS vaccine induced immunity and that both TE/EM and TCM cells are major producers of IL-2
Cost-effectiveness of intermittent preventive treatment of malaria in infants (IPTi) for averting anaemia in Gabon: a comparison between intention to treat and according to protocol analyses
ABSTRACT: BACKGROUND: In Gabon, the impact of intermittent preventive treatment of malaria in infants (IPTi) was not statistically significant on malaria reduction, but the impact on moderate anaemia was, with some differences between the intention to treat (ITT) and the according to protocol (ATP) trial analyses. Specifically, ATP was statistically significant, while ITT analysis was borderline. The main reason for the difference between ITT and ATP populations was migration. METHODS: This study estimates the cost-effectiveness of IPTi on the reduction of anaemia in Gabon, comparing results of the ITT and the ATP clinical trial analyses. Threshold analysis was conducted to identify when the intervention costs and protective efficacy of IPTi for the ATP cohort equalled the ITT cost-effectiveness ratio. RESULTS: Based on IPTi intervention costs, the cost per episode of moderate anaemia averted was US11.30 (CI 95% 4.56, 26.66) using the ATP analysis. In order for the ATP results to equal the cost-effectiveness of ITT, total ATP intervention costs should rise from US134 or the protective efficacy should fall from 27% to 18.1%. The uncertainty surrounding the cost-effectiveness ratio using ITT trial results was higher than using the ATP results. CONCLUSIONS: Migration implies great challenges in the organization of health interventions that require repeat visits in Gabon. This was apparent in the study as the cost-effectiveness of IPTp-SP worsened when drop out from the prevention was taken into account. Despite such challenges, IPTi was both inexpensive and efficacious in averting cases of moderate anaemia in infant
Population diversity and function of hyperpolarization-activated current in olfactory bulb mitral cells
Although neurons are known to exhibit a broad array of intrinsic properties that impact critically on the computations they perform, very few studies have quantified such biophysical diversity and its functional consequences. Using in vivo and in vitro whole-cell recordings here we show that mitral cells are extremely heterogeneous in their expression of a rebound depolarization (sag) at hyperpolarized potentials that is mediated by a ZD7288-sensitive current with properties typical of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. The variability in sag expression reflects a functionally diverse population of mitral cells. For example, those cells with large amplitude sag exhibit more membrane noise, a lower rheobase and fire action potentials more regularly than cells where sag is absent. Thus, cell-to-cell variability in sag potential amplitude reflects diversity in the integrative properties of mitral cells that ensures a broad dynamic range for odor representation across these principal neurons
Ih-mediated depolarization enhances the temporal precision of neuronal integration
Feed-forward inhibition mediated by ionotropic GABAA receptors contributes to the temporal precision of neuronal signal integration. These receptors exert their inhibitory effect by shunting excitatory currents and by hyperpolarizing neurons. The relative roles of these mechanisms in neuronal computations are, however, incompletely understood. In this study, we show that by depolarizing the resting membrane potential relative to the reversal potential for GABAA receptors, the hyperpolarization-activated mixed cation current (Ih) maintains a voltage gradient for fast synaptic inhibition in hippocampal pyramidal cells. Pharmacological or genetic ablation of Ih broadens the depolarizing phase of afferent synaptic waveforms by hyperpolarizing the resting membrane potential. This increases the integration time window for action potential generation. These results indicate that the hyperpolarizing component of GABAA receptor-mediated inhibition has an important role in maintaining the temporal fidelity of coincidence detection and suggest a previously unrecognized mechanism by which Ih modulates information processing in the hippocampus
In Vitro and In Vivo High-Throughput Assays for the Testing of Anti-Trypanosoma cruzi Compounds
The treatment of Trypanosoma cruzi infection (the cause of human Chagas disease) remains a significant challenge. Only two drugs, both with substantial toxicity, are available and the efficacy of these dugs is often questioned – in many cases due to the limitations of the methods for assessing efficacy rather than to true lack of efficacy. For these reasons relatively few individuals infected with T. cruzi actually have their infections treated. In this study, we report on innovative methods that will facilitate the discovery of new compounds for the treatment of T. cruzi infection and Chagas disease. Utilizing fluorescent and bioluminescent parasite lines, we have developed in vitro tests that are reproducible and facile and can be scaled for high-throughput screening of large compound libraries. We also validate an in vivo screening test that monitors parasite replication at the site of infection and determines the effectiveness of drug treatment in less than two weeks. More importantly, results in this rapid in vivo test show strong correlations with those obtained in long-term (e.g. 40 day or more) treatment assays. The results of this study remove one of the obstacles for identification of effective and safe compounds to treat Chagas disease
Crystal Structure of a Yeast Aquaporin at 1.15 Å Reveals a Novel Gating Mechanism
Atomic-resolution X-ray crystallography, functional analyses, and molecular dynamics simulations suggest a novel mechanism for the regulation of water flux through the yeast Aqy1 water channel
Adenovirus-5-Vectored P. falciparum Vaccine Expressing CSP and AMA1. Part B: Safety, Immunogenicity and Protective Efficacy of the CSP Component
Background: A protective malaria vaccine will likely need to elicit both cell-mediated and antibody responses. As adenovirus vaccine vectors induce both these responses in humans, a Phase 1/2a clinical trial was conducted to evaluate the efficacy of an adenovirus serotype 5-vectored malaria vaccine against sporozoite challenge.\ud
\ud
Methodology/Principal Findings: NMRC-MV-Ad-PfC is an adenovirus vector encoding the Plasmodium falciparum 3D7 circumsporozoite protein (CSP). It is one component of a two-component vaccine NMRC-M3V-Ad-PfCA consisting of one adenovector encoding CSP and one encoding apical membrane antigen-1 (AMA1) that was evaluated for safety and immunogenicity in an earlier study (see companion paper, Sedegah et al). Fourteen Ad5 seropositive or negative adults received two doses of NMRC-MV-Ad-PfC sixteen weeks apart, at 1x1010 particle units per dose. The vaccine was safe and well tolerated. All volunteers developed positive ELISpot responses by 28 days after the first immunization (geometric mean 272 spot forming cells/million[sfc/m]) that declined during the following 16 weeks and increased after the second dose to levels that in most cases were less than the initial peak (geometric mean 119 sfc/m). CD8+ predominated over CD4+ responses, as in the first clinical trial. Antibody responses were poor and like ELISpot responses increased after the second immunization but did not exceed the initial peak. Pre-existing neutralizing antibodies (NAb) to Ad5 did not affect the immunogenicity of the first dose, but the fold increase in NAb induced by the first dose was significantly associated with poorer antibody responses after the second dose, while ELISpot responses remained unaffected. When challenged by the bite of P. falciparum-infected mosquitoes, two of 11 volunteers showed a delay in the time to patency compared to infectivity controls, but no volunteers were sterilely protected.\ud
\ud
Significance: The NMRC-MV-Ad-PfC vaccine expressing CSP was safe and well tolerated given as two doses, but did not provide sterile protection
- …
