239 research outputs found
Environmental geology study: parts of west Wiltshire and south-east Avon
The objective of this study has been to collect and interpret the available environmental geology data and to use it to compile a set of thematic maps and this report. The maps and report are intended for use by those not trained in geology as well as specialists, and to help assess the land-use planning implications of surface and subsurface development
Geometrical complexity of data approximators
There are many methods developed to approximate a cloud of vectors embedded
in high-dimensional space by simpler objects: starting from principal points
and linear manifolds to self-organizing maps, neural gas, elastic maps, various
types of principal curves and principal trees, and so on. For each type of
approximators the measure of the approximator complexity was developed too.
These measures are necessary to find the balance between accuracy and
complexity and to define the optimal approximations of a given type. We propose
a measure of complexity (geometrical complexity) which is applicable to
approximators of several types and which allows comparing data approximations
of different types.Comment: 10 pages, 3 figures, minor correction and extensio
Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets
Aim: To determine whether Megasphaera elsdenii YE34 (lactic acid degrader) and Butyrivibrio fibrisolvens YE44 (alternative starch utilizer to Streptococcus bovis) establish viable populations in the rumen of beef cattle rapidly changed from a forage-based to a grain-based diet.
Methods and Results: Five steers were inoculated with the two bacterial strains (YE34 and YE44) and five served as uninoculated controls. With the exception of one animal in the control group, which developed acidosis, all steers rapidly adapted to the grain-based diet without signs of acidosis (pH decline and accumulation of lactic acid). Bacterial populations of S. bovis, B. fibrisolvens and M. elsdenii were enumerated using real-time Taq nuclease assays. Populations of S. bovis remained constant (except in the acidotic animal) at ca 107 cell equivalents (CE) ml-1 throughout the study. Megasphaera elsdenii YE34, was not detectable in animals without grain in the diet, but immediately established in inoculated animals, at 106 CE ml-1, and increased 100-fold in the first 4 days following inoculation. Butyrivibrio fibrisolvens, initially present at 108 CE ml-1, declined rapidly with the introduction of grain into the diet and was not detectable 8 days after grain introduction.
Conclusion: Megasphaera elsdenii rapidly establishes a lactic acid-utilizing bacterial population in the rumen of grain-fed cattle 7–10 days earlier than in uninoculated cattle. Significance and Impact of the Study:
The study has demonstrated that rumen bacterial populations, and in particular the establishment of bacteria inoculated into the rumen for probiotic use, can be monitored by real-time PCR
Prescission neutron multiplicity and fission probability from Langevin dynamics of nuclear fission
A theoretical model of one-body nuclear friction which was developed earlier,
namely the chaos-weighted wall formula, is applied to a dynamical description
of compound nuclear decay in the framework of the Langevin equation coupled
with statistical evaporation of light particles and photons. We have used both
the usual wall formula friction and its chaos-weighted version in the Langevin
equation to calculate the fission probability and prescission neutron
multiplicity for the compound nuclei W, Pt, Pb,
Fr, Th, and Es. We have also obtained the contributions
of the presaddle and postsaddle neutrons to the total prescission multiplicity.
A detailed analysis of our results leads us to conclude that the chaos-weighted
wall formula friction can adequately describe the fission dynamics in the
presaddle region. This friction, however, turns out to be too weak to describe
the postsaddle dynamics properly. This points to the need for a suitable
explanation for the enhanced neutron emission in the postsaddle stage of
nuclear fission.Comment: RevTex, 14 pages including 5 Postscript figures, results improved by
using a different potential, conclusions remain unchanged, to appear in Phys.
Rev.
Interactions between atmospheric composition and climate change – progress in understanding and future opportunities from AerChemMIP, PDRMIP, and RFMIP
The climate science community aims to improve our understanding of climate change due to anthropogenic influences on atmospheric composition and the Earth's surface. Yet not all climate interactions are fully understood, and uncertainty in climate model results persists, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. We synthesize current challenges and emphasize opportunities for advancing our understanding of the interactions between atmospheric composition, air quality, and climate change, as well as for quantifying model diversity. Our perspective is based on expert views from three multi-model intercomparison projects (MIPs) – the Precipitation Driver Response MIP (PDRMIP), the Aerosol Chemistry MIP (AerChemMIP), and the Radiative Forcing MIP (RFMIP). While there are many shared interests and specializations across the MIPs, they have their own scientific foci and specific approaches. The partial overlap between the MIPs proved useful for advancing the understanding of the perturbation–response paradigm through multi-model ensembles of Earth system models of varying complexity. We discuss the challenges of gaining insights from Earth system models that face computational and process representation limits and provide guidance from our lessons learned. Promising ideas to overcome some long-standing challenges in the near future are kilometer-scale experiments to better simulate circulation-dependent processes where it is possible and machine learning approaches where they are needed, e.g., for faster and better subgrid-scale parameterizations and pattern recognition in big data. New model constraints can arise from augmented observational products that leverage multiple datasets with machine learning approaches. Future MIPs can develop smart experiment protocols that strive towards an optimal trade-off between the resolution, complexity, and number of simulations and their length and, thereby, help to advance the understanding of climate change and its impacts
20 years of the Atlantic Meridional Transect - AMT
The AMT (www.amt-uk.org) is a multidisciplinary programme which undertakes biological, chemical, and physical oceanographic research during an annual voyage between the UK and a destination in the South Atlantic such as the Falkland Islands, South Africa, or Chile. This transect of >12,000 km crosses a range of ecosystems from subpolar to tropical, from euphotic shelf seas and upwelling systems, to oligotrophic mid-ocean gyres. The year 2015 has seen two milestones in the history of the AMT: the achievement of 20 years of this unique ocean going programme and the departure of the 25th cruise on the 15th of September. Both of these events were celebrated in June this year with an open science conference hosted by the Plymouth Marine Laboratory (PML) and will be further documented in a special issue of Progress in Oceanography which is planned for publication in 2016. Since 1995, the 25 research cruises have involved 242 sea-going scientists from 66 institutes representing 22 countries. AMT was designed from the outset to be a collaborative programme. It was originally conceived by Jim Aiken, Patrick Holligan, Roger Harris, and Dave Robins with Chuck McClain and Chuck Trees at NASA to test and ground truth satellite algorithms of ocean color. The opportunities offered by this initiative meant that this series of repeated biannual cruises rapidly developed into a coordinated study of ocean biodiversity, biogeochemistry, and ocean/atmosphere interactions
Diabetic gastroparesis: Therapeutic options
Gastroparesis is a condition characterized by delayed gastric emptying and the most common known underlying cause is diabetes mellitus. Symptoms include nausea, vomiting, abdominal fullness, and early satiety, which impact to varying degrees on the patient’s quality of life. Symptoms and deficits do not necessarily relate to each other, hence despite significant abnormalities in gastric emptying, some individuals have only minimal symptoms and, conversely, severe symptoms do not always relate to measures of gastric emptying. Prokinetic agents such as metoclopramide, domperidone, and erythromycin enhance gastric motility and have remained the mainstay of treatment for several decades, despite unwanted side effects and numerous drug interactions. Mechanical therapies such as endoscopic pyloric botulinum toxin injection, gastric electrical stimulation, and gastrostomy or jejunostomy are used in intractable diabetic gastroparesis (DG), refractory to prokinetic therapies. Mitemcinal and TZP-101 are novel investigational motilin receptor and ghrelin agonists, respectively, and show promise in the treatment of DG. The aim of this review is to provide an update on prokinetic and mechanical therapies in the treatment of DG
Deficient histone H3 propionylation by BRPF1-KAT6 complexes in neurodevelopmental disorders and cancer
Lysine acetyltransferase 6A (KAT6A) and its paralog KAT6B form stoichiometric complexes with bromodomain- and PHD finger-containing protein 1 (BRPF1) for acetylation of histone H3 at lysine 23 (H3K23). We report that these complexes also catalyze H3K23 propionylati
Effective radiative forcing and adjustments in CMIP6 models
The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 13 contemporary climate models that are participating in CMIP6 and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global mean anthropogenic forcing relative to pre-industrial (1850) from climate models stands at 1.97 (± 0.26) W m−2, comprised of 1.80 (± 0.11) W m−2 from CO2, 1.07 (± 0.21) W m−2 from other well-mixed greenhouse gases, −1.04 (± 0.23) W m−2 from aerosols and −0.08 (± 0.14) W m−2 from land use change. Quoted uncertainties are one standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m−2. The majority of the remaining 0.17 W m−2 is likely to be from ozone. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the traditional stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing, but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m−2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4 × CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with equilibrium climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing
- …