There are many methods developed to approximate a cloud of vectors embedded
in high-dimensional space by simpler objects: starting from principal points
and linear manifolds to self-organizing maps, neural gas, elastic maps, various
types of principal curves and principal trees, and so on. For each type of
approximators the measure of the approximator complexity was developed too.
These measures are necessary to find the balance between accuracy and
complexity and to define the optimal approximations of a given type. We propose
a measure of complexity (geometrical complexity) which is applicable to
approximators of several types and which allows comparing data approximations
of different types.Comment: 10 pages, 3 figures, minor correction and extensio