94 research outputs found

    Peatland afforestation in the UK and consequences for carbon storage

    Get PDF
    Peatlands are a globally significant store of carbon. During the second half of the 20th century new planting techniques combined with tax incentives encouraged commercial forestry across large areas of peat bog in the UK, particularly in the Flow Country of northern Scotland. Such planting was controversial and was ultimately halted by removal of the tax incentives, and policies to prevent new planting. Here we review the literature on UK peatland afforestation in relation to carbon and climate implications, and identify key issues for future research. The effects of conifer planting on peat bog carbon storage in the UK are poorly understood. A large body of research on peatland forestry exists, particularly from naturally forested fen peatlands in Fennoscandia and Russia, but the different conditions in the UK mean that results are not directly transferable. Data on the responses of UK peat bogs to afforestation are required to address this shortfall. Studies are required that quantify the loss of carbon from the peat and evaluate it against the accumulation of carbon above and below ground in trees, considering the likely residence time of carbon in wood products

    Peatland afforestation in the UK and consequences for carbon storage

    Get PDF
    Peatlands are a globally significant store of carbon. During the second half of the 20th century new planting techniques combined with tax incentives encouraged commercial forestry across large areas of peat bog in the UK, particularly in the Flow Country of northern Scotland. Such planting was controversial and was ultimately halted by removal of the tax incentives, and policies to prevent new planting. Here we review the literature on UK peatland afforestation in relation to carbon and climate implications, and identify key issues for future research. The effects of conifer planting on peat bog carbon storage in the UK are poorly understood. A large body of research on peatland forestry exists, particularly from naturally forested fen peatlands in Fennoscandia and Russia, but the different conditions in the UK mean that results are not directly transferable. Data on the responses of UK peat bogs to afforestation are required to address this shortfall. Studies are required that quantify the loss of carbon from the peat and evaluate it against the accumulation of carbon above and below ground in trees, considering the likely residence time of carbon in wood products

    Cold Gas in Cluster Cores

    Full text link
    I review the literature's census of the cold gas in clusters of galaxies. Cold gas here is defined as the gas that is cooler than X-ray emitting temperatures (~10^7 K) and is not in stars. I present new Spitzer IRAC and MIPS observations of Abell 2597 (PI: Sparks) that reveal significant amounts of warm dust and star formation at the level of 5 solar masses per year. This rate is inconsistent with the mass cooling rate of 20 +/- 5 solar masses per year inferred from a FUSE [OVI] detection.Comment: 10 pages, conference proceeding

    Extreme events and predictability of catastrophic failure in composite materials and in the Earth

    Get PDF
    Despite all attempts to isolate and predict extreme earthquakes, these nearly always occur without obvious warning in real time: fully deterministic earthquake prediction is very much a ‘black swan’. On the other hand engineering-scale samples of rocks and other composite materials often show clear precursors to dynamic failure under controlled conditions in the laboratory, and successful evacuations have occurred before several volcanic eruptions. This may be because extreme earthquakes are not statistically special, being an emergent property of the process of dynamic rupture. Nevertheless, probabilistic forecasting of event rate above a given size, based on the tendency of earthquakes to cluster in space and time, can have significant skill compared to say random failure, even in real-time mode. We address several questions in this debate, using examples from the Earth (earthquakes, volcanoes) and the laboratory, including the following. How can we identify ‘characteristic’ events, i.e. beyond the power law, in model selection (do dragon-kings exist)? How do we discriminate quantitatively between stationary and non-stationary hazard models (is a dragon likely to come soon)? Does the system size (the size of the dragon’s domain) matter? Are there localising signals of imminent catastrophic failure we may not be able to access (is the dragon effectively invisible on approach)? We focus on the effect of sampling effects and statistical uncertainty in the identification of extreme events and their predictability, and highlight the strong influence of scaling in space and time as an outstanding issue to be addressed by quantitative studies, experimentation and models

    Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays

    Get PDF
    A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity

    Subaru Studies of the Cosmic Dawn

    Get PDF
    An overview on the current status of the census of the early universe population is given. Observational surveys of high redshift objects provide direct opportunities to study the early epoch of the Universe. The target population included are Lyman Alpha Emitters (LAE), Lyman Break Galaxies (LBG), gravitationally lensed galaxies, quasars and gamma-ray bursts (GRB). The basic properties of these objects and the methods used to study them are reviewed. The present paper highlights the fact that the Subaru Telescope group made significant contributions in this field of science to elucidate the epoch of the cosmic dawn and to improve the understanding of how and when infant galaxies evolve into mature ones.Comment: 14 pages, 11 figures, accepted for publication in the Proceedings of the Japan Academy, Series

    Three principles for the progress of immersive technologies in healthcare training and education

    Get PDF

    Phylogenomics and the rise of the angiosperms

    Get PDF
    Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade
    corecore