289 research outputs found

    Catabolic capacity of the muscles of shorebird chicks:Maturation of function in relation to body size

    Get PDF
    Newly hatched precocial chicks of arctic shorebirds are able to walk and regulate their body temperatures to a limited extent. Yet, they must also grow rapidly to achieve independence before the end of the short arctic growing season. A rapid growth rate may conflict with development of mature function, and because of the allometric scaling of thermal relationships, this trade-off might be resolved differently in large and small species. We assessed growth (mass) and functional maturity (catabolic enzyme activity) in leg and pectoral muscles of chicks aged 1-16 d and adults of two scolopacid shorebirds, the smaller dunlin (Calidris alpina: neonate mass 8 g, adult mass 50 g) and larger whimbrel (Numenius phaeopus; neonate mass 34 g, adult mass 380 g). Enzyme activity indicates maximum catabolic capacity, which is one aspect of the development of functional maturity of muscle. The growth rate-maturity hypothesis predicts that the development of catabolic capacity should be delayed in faster-growing muscle masses. Leg muscles of both species were a larger proportion of adult size at hatching and grew faster than pectoral muscles. Pectoral muscles grew more rapidly in the dunlin than in the whimbrel, whereas leg muscles grew more rapidly in the whimbrel. In both species and in both leg and pectoral muscles, enzyme activities generally increased with age, suggesting increasing functional maturity. Levels of citrate synthase activity were similar to those reported for other species, but L-3-hydroxyacyl-CoA-dehydrogenase and pyruvate kinase (PK) activities were comparatively high. Catabolic capacities of leg muscles were initially high compared to those of pectoral muscles, but with the exception of glycolytic (PK) capacities, these subsequently increased only modestly or even decreased as chicks grew. The earlier functional maturity of the more rapidly growing leg muscles, as well as the generally higher functional maturity in muscles of the more rapidly growing dunlin chicks, contradicts the growth rate-maturity function trade-off and suggests that birds have considerable latitude to modify this relationship. Whimbrel chicks, apparently, can rely on allometric scaling of power requirements for locomotion and the thermal inertia of their larger mass to reduce demands on their muscles, whereas dunlin chicks require muscles with higher metabolic capacity from an earlier age. Thus, larger and smaller species may adopt different strategies of growth and tissue maturation

    Is cell-mediated immunity related to the evolution of life-history strategies in birds?

    Get PDF
    According to life-history theory, the development of immune function should be balanced through evolutionary optimization of the allocation of resources to reproduction and through mechanisms that promote survival. We investigated interspecific variability in cell-mediated immune response (CMI), as measured by the phytohaemagglutinin (PHA) assay, in relation to clutch size, longevity and other life-history traits in 50 species of birds. CMI exhibited significant repeatability within species, and PHA responses in chicks were consistently stronger than in adults. Univariate tests showed a variety of significant relationships between the CMI of both chicks and adults with respect to size, development period and lifespan, but not clutch size or prevalence of blood parasites in adults. Multivariate analyses confirmed these patterns but independent variables were too highly correlated to isolate unique influences on CMI. The positive relationship of chick CMI to nestling period is further complicated by a parallel relationship of chick CMI to the age at testing. However, multivariate analysis showed that chick CMI varies uniquely with length of the nestling period. Adult CMI was associated with a strong life-history axis of body size, development rate and longevity. Therefore, adult CMI may be associated with prevention and repair mechanisms related to long lifespan, but it also may be allometrically related to body size through other pathways. Neither chick CMI nor adult CMI was related to clutch size, contradicting previous results linking parasite-related mortality to CMI and the evolution of clutch size (reproductive investment) in birds.Peer Reviewe

    Assembling a species–area curve through colonization, speciation and human‐mediated introduction

    Full text link
    AimThe fundamental biogeographical processes of colonization, speciation and extinction shape island biotas in space–time. On oceanic islands, area and isolation affect these processes and resulting biodiversity patterns. In the Anthropocene, a new human‐mediated colonization dynamic is altering insular ecosystems world‐wide. Here, we test predictions about the roles of archipelago area and isolation in structuring ant diversity patterns through effects on both natural and anthropogenic biogeographical processes.LocationTropical Pacific islands.MethodsWe compiled a comprehensive data set of ant faunal compositions across tropical Pacific archipelagos. Using regression analysis we evaluated the bivariate and interactive effects of area and isolation on the number of colonizing lineages, native species, endemic species, exotic species and total richness in the archipelago.ResultsThere is a strong species–area effect and a much more modest isolation effect on total ant species richness across the Pacific archipelagos. The number of colonizing lineages of each archipelago is strongly driven by the isolation of the archipelago. Endemic species are present in large archipelagos of low and intermediate isolation. The most remote archipelagos are nearly devoid of endemic lineages and their ant faunas are largely composed of Pacific Tramp species and exotics brought from outside the Pacific region.Main conclusionsThe prominent species–area curve in Pacific ants emerged over time through multiple processes. The colonization of lineages is determined primarily by isolation, with few or no lineages reaching remote archipelagos. Cladogenesis mediates the isolation effect and increases the area effect through the differential radiation of lineages in large archipelagos. In the Anthropocene, the assembly of the species–area relationship has accelerated dramatically through human‐mediated colonization. Overall, our results support a view that species–area curves reflect regulating limits on species richness that scale with area, but that multiple biogeographical processes can occur to achieve these limits.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136723/1/jbi12884.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136723/2/jbi12884_am.pd

    A conceptual model of community dynamics during the transport stage of the invasion process: a case study of ships’ ballast

    Get PDF
    Aim: After J. L. Lockwood, P. Cassey and T. Blackburn (2009, Diversity and Distributions, 15, 904–910) first described a theoretical relationship between propagule pressure and colonization pressure, two empirical studies demonstrated that the transport stage of the invasion process can profoundly influence the strength of the relationship among multiple events, as well as predictions of introduction risk. However, studies exploring dynamics of transported communities are rare, as repeated-measures sampling during transportation by any vector is logistically difficult. We constructed a conceptual model of community dynamics during transportation and supported it by empirical data for propagule pressure and colonization pressure of plankton. Location: Global. Methods: A conceptual model of community dynamics was developed based on lognormal species abundance distribution and the simulation model of J. L. Lockwood, P. Cassey and T. Blackburn (2009, Diversity and Distributions, 15, 904–910). We considered four cases: case ‘A’ – no reduction in propagule nor colonization pressure; case ‘B’ – strong reduction in propagule and mild reduction in colonization pressure; case ‘C’ – mild reduction in propagule and strong reduction in colonization pressure; and case ‘D’ – strong reduction in both propagule and colonization pressures. Results: The cases ‘B’, ‘C’ and ‘D’ were supported by empirical data for invertebrates, dinoflagellates and diatoms from ships’ ballast tanks, respectively. Propagule pressure of invertebrates, dinoflagellates and diatoms decreased 99.95%, 80% and 94% in 25 days, respectively, while colonization pressure decreased 34%, 57% and 64%. Main conclusions: Transport affects both propagule pressure and colonization pressure of taxa, with the magnitude of change dependent on length of transport and taxon-specific survival and reproduction. Our model demonstrates that introduction risk varies substantially across and within taxa depending on the occurrence and severity of selection pressures during transportation which serve to change species abundance distributions

    New directions in island biogeography

    Get PDF
    Aim: Much of our current understanding of ecological and evolutionary processes comes from island research. With the increasing availability of data on distributions and phylogenetic relationships and new analytical approaches to understanding the processes that shape species distributions and interactions, a re-evaluation of this ever-interesting topic is timely. Location: Islands globally. Methods: We start by arguing that the reasons why island research has achieved so much in the past also apply to the future. We then critically assess the current state of island biogeography, focusing on recent changes in emphasis, including research featured in this special issue of Global Ecology and Biogeography. Finally, we suggest promising themes for the future. We cover both ecological and evolutionary topics, although the greater emphasis on island ecology reflects our own backgrounds and interests. Results: Much ecological theory has been directly or indirectly influenced by research on island biotas. Currently, island biogeography is renascent, with research focusing on, among other things, patterns and processes underlying species interaction networks, species coexistence and the assembly of island communities through ecological and evolutionary time. Continuing island research should provide additional insight into biological invasions and other impacts of human activities, functional diversity and ecosystem functioning, extinction and diversification, species pools and more. Deeper understanding of the similarities and differences between island and mainland systems will aid transferability of island theory to continental regions. Main conclusions: As research in biogeography and related fields expands in new directions, islands continue to provide opportunities for developing insights, both as natural laboratories for ecology and evolution and because of the exceptions islands often present to the usual ‘rules’ of ecology. New data collection initiatives are needed on islands world-wide and should be directed towards filling gaps in our knowledge of within-island distributions of species, as well as the functional traits and phylogenetic relationships of island species

    Immunosenescence in wild animals:Meta-analysis and outlook

    Get PDF
    Immunosenescence, the decline in immune defense with age, is an important mortality source in elderly humans but little is known of immunosenescence in wild animals. We systematically reviewed and meta-analysed evidence for age-related changes in immunity in captive and free-living populations of wild species (321 effect sizes in 62 studies across 44 species of mammals, birds and reptiles). As in humans, senescence was more evident in adaptive (acquired) than innate immune functions. Declines were evident for cell function (antibody response), the relative abundance of naive immune cells and an in vivo measure of overall immune responsiveness (local response to phytohaemagglutinin injection). Inflammatory markers increased with age, similar to chronic inflammation associated with human immunosenescence. Comparisons across taxa and captive vs free-living animals were difficult due to lack of overlap in parameters and species measured. Most studies are cross-sectional, which yields biased estimates of age-effects when immune function co-varies with survival. We therefore suggest longitudinal sampling approaches, and highlight techniques from human cohort studies that can be incorporated into ecological research. We also identify avenues to address predictions from evolutionary theory and the contribution of immunosenescence to age-related increases in disease susceptibility and mortality
    • 

    corecore