1,409 research outputs found

    Plant Metabolomics Applications in the Brassicaceae: Added Value for Science and Industry

    Get PDF
    Crops from the family Brassicaceae represent a diverse and very interesting group of plants. In addition, their close relationship with the model plant, Arabidopsis thaliana, makes combined research on these species both scientifically valuable and of considerable commercial importance. In the post-genomics era, much effort is being placed on expanding our capacity to use advanced technologies such as proteomics and metabolomics, to broaden our knowledge of the molecular organization of plants and how genetic differences are translated into phenotypic ones. Metabolomics in particular is gaining much attention mainly due both to the comprehensiveness of the technology and also the potentially close relationship between biochemical composition (including human health-related phytochemicals) and phenotype. In this short review, a brief introduction to the main metabolomics technologies is given taking examples from research on the Brassicaceae for illustratio

    Enhancement of deep epileptiform activity in the EEG via 3-D adaptive spatial filtering,

    Get PDF
    The detection of epileptiform discharges (ED’s) in the electroencephalogram (EEG) is an important component in the diagnosis of epilepsy. However, when the epileptogenic source is located deep in the brain, the ED’s at the scalp are often masked by more superficial, higher-amplitude EEG activity. A noninvasive technique which uses an adaptive “beamformer” spatial filter has been investigated for the enhancement of signals from deep sources in the brain suspected of containing ED’s. A forward three-layer spherical model was used to relate a dipolar source to recorded signals to determine the beamformer’s spatial response constraints. The beamformer adapts, using the least-mean-squares (LMS) algorithm, to reduce signals from sources distant to some arbitrarily defined location in the brain. The beamformer produces three outputs, being the orthogonal components of the signal estimated to have arisen at or near the assumed location. Simulations were performed by using the same forward model to superimpose realistic ED’s on normal EEG recordings. The simulations show the beamformer’s ability to enhance signals emanating from deep foci by way of an enhancement ratio (ER), being the improvement in signal-to-noise ratio (SNR) to that observed at any of the scalp electrodes. The performance of the beamformer has been evaluated for 1) the number of scalp electrodes, 2) the recording montage, 3) dependence on the background EEG, 4) dependence on magnitude, depth, and orientation of epileptogenic focus, and 5) sensitivity to inaccuracies in the estimated location of the focus. Results from the simulations show the beamformer’s performance to be dependent on the number of electrodes and moderately sensitive to variations in the EEG background. Conversely, its performance appears to be largely independent of the amplitude and morphology of the ED. The dependence studies indicated that the beamformer’s performance was moderately dependent on eccentricity with the ER increasing as the dipolar source and the beamformer were moved from the center to the surface of the brain (1.51–2.26 for radial dipoles and 1.17–2.69 for tangential dipoles). The beamformer was also moderately dependent on variations in polar or azimuthal angle for radial and tangential dipoles. Higher ER’s tended to be seen for locations between electrode sites. The beamformer was more sensitive to inaccuracies in both polar and azimuthal location than depth of the dipolar source. For polar locations, an ER > 1.0 was achieved when the beamformer was located within 25 of a radial dipole and 35 of a tangential dipole. Similarly, angular ranges of 37.5 and 45 , respectively, for inaccuracies in azimuthal locations. Preliminary results from real EEG records, comprising 12 definite or questionable epileptiform events, from four patients, demonstrated the beamformer’s ability to enhance these events by a mean 100% (52%–215%) for referential data and a mean 104% (50%–145%) for bipolar data

    Large Transverse Momenta in Statistical Models of High Energy Interactions

    Full text link
    The creation of particles with large transverse momenta in high energy hadronic collisions is a long standing problem. The transition from small- (soft) to hard- parton scattering `high-pt' events is rather smooth. In this paper we apply the non-extensive statistical framework to calculate transverse momentum distributions of long lived hadrons created at energies from low (sqrt(s)~10 GeV) to the highest energies available in collider experiments (sqrt(s)~2000 GeV). Satisfactory agreement with the experimental data is achieved. The systematic increase of the non-extensivity parameter with energy found can be understood as phenomenological evidence for the increased role of long range correlations in the hadronization process. Predictions concerning the rise of average transverse momenta up to the highest cosmic ray energies are also given and discussed.Comment: 20 pages, 10 figure

    Nonstationary Stochastic Resonance in a Single Neuron-Like System

    Full text link
    Stochastic resonance holds much promise for the detection of weak signals in the presence of relatively loud noise. Following the discovery of nondynamical and of aperiodic stochastic resonance, it was recently shown that the phenomenon can manifest itself even in the presence of nonstationary signals. This was found in a composite system of differentiated trigger mechanisms mounted in parallel, which suggests that it could be realized in some elementary neural networks or nonlinear electronic circuits. Here, we find that even an individual trigger system may be able to detect weak nonstationary signals using stochastic resonance. The very simple modification to the trigger mechanism that makes this possible is reminiscent of some aspects of actual neuron physics. Stochastic resonance may thus become relevant to more types of biological or electronic systems injected with an ever broader class of realistic signals.Comment: Plain Latex, 7 figure

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Measurement of the Strong Coupling alpha s from Four-Jet Observables in e+e- Annihilation

    Full text link
    Data from e+e- annihilation into hadrons at centre-of-mass energies between 91 GeV and 209 GeV collected with the OPAL detector at LEP, are used to study the four-jet rate as a function of the Durham algorithm resolution parameter ycut. The four-jet rate is compared to next-to-leading order calculations that include the resummation of large logarithms. The strong coupling measured from the four-jet rate is alphas(Mz0)= 0.1182+-0.0003(stat.)+-0.0015(exp.)+-0.0011(had.)+-0.0012(scale)+-0.0013(mass) in agreement with the world average. Next-to-leading order fits to the D-parameter and thrust minor event-shape observables are also performed for the first time. We find consistent results, but with significantly larger theoretical uncertainties.Comment: 25 pages, 15 figures, Submitted to Euro. Phys. J.

    Search for R-Parity Violating Decays of Scalar Fermions at LEP

    Full text link
    A search for pair-produced scalar fermions under the assumption that R-parity is not conserved has been performed using data collected with the OPAL detector at LEP. The data samples analysed correspond to an integrated luminosity of about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An important consequence of R-parity violation is that the lightest supersymmetric particle is expected to be unstable. Searches of R-parity violating decays of charged sleptons, sneutrinos and squarks have been performed under the assumptions that the lightest supersymmetric particle decays promptly and that only one of the R-parity violating couplings is dominant for each of the decay modes considered. Such processes would yield final states consisting of leptons, jets, or both with or without missing energy. No significant single-like excess of events has been observed with respect to the Standard Model expectations. Limits on the production cross- section of scalar fermions in R-parity violating scenarios are obtained. Constraints on the supersymmetric particle masses are also presented in an R-parity violating framework analogous to the Constrained Minimal Supersymmetric Standard Model.Comment: 51 pages, 24 figures, Submitted to Eur. Phys. J.

    A measurement of the tau mass and the first CPT test with tau leptons

    Full text link
    We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV using tau pairs from Z0 decays. To test CPT invariance we compare the masses of the positively and negatively charged tau leptons. The relative mass difference is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.

    First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons

    Full text link
    We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters

    Measurement of the Michel Parameters in Leptonic Tau Decays

    Get PDF
    The Michel parameters of the leptonic tau decays are measured using the OPAL detector at LEP. The Michel parameters are extracted from the energy spectra of the charged decay leptons and from their energy-energy correlations. A new method involving a global likelihood fit of Monte Carlo generated events with complete detector simulation and background treatment has been applied to the data recorded at center-of-mass energies close to sqrt(s) = M(Z) corresponding to an integrated luminosity of 155 pb-1 during the years 1990 to 1995. If e-mu universality is assumed and inferring the tau polarization from neutral current data, the measured Michel parameters are extracted. Limits on non-standard coupling constants and on the masses of new gauge bosons are obtained. The results are in agreement with the V-A prediction of the Standard Model.Comment: 32 pages, LaTeX, 9 eps figures included, submitted to the European Physical Journal
    corecore