Abstract

The creation of particles with large transverse momenta in high energy hadronic collisions is a long standing problem. The transition from small- (soft) to hard- parton scattering `high-pt' events is rather smooth. In this paper we apply the non-extensive statistical framework to calculate transverse momentum distributions of long lived hadrons created at energies from low (sqrt(s)~10 GeV) to the highest energies available in collider experiments (sqrt(s)~2000 GeV). Satisfactory agreement with the experimental data is achieved. The systematic increase of the non-extensivity parameter with energy found can be understood as phenomenological evidence for the increased role of long range correlations in the hadronization process. Predictions concerning the rise of average transverse momenta up to the highest cosmic ray energies are also given and discussed.Comment: 20 pages, 10 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 25/03/2019