183 research outputs found

    Adult attachment style across individuals and role-relationships: Avoidance is relationship-specific, but anxiety shows greater generalizability

    Get PDF
    A generalisability study examined the hypotheses that avoidant attachment, reflecting the representation of others, should be more relationship-specific (vary across relationships more than across individuals), while attachment anxiety, reflecting self-representation, should be more generalisable across a person’s relationships. College students responded to 6-item questionnaire measures of these variables for 5 relationships (mother, father, best same-gender friend, romantic partner or best opposite-gender friend, other close person), on 3 (N = 120) or 2 (N = 77) occasions separated by a few weeks. Results supported the hypotheses, with the person variance component being larger than the relationship-specific component for anxiety, and the opposite happening for avoidance. Anxiety therefore seems not to be as relationship-specific as previous research suggested. Possible reasons for discrepancies between the current and previous studies are discussed

    The induction of behavioural sensitization is associated with cocaine-induced structural plasticity in the core (but not shell) of the nucleus accumbens

    Full text link
    Repeated exposure to cocaine increases the density of dendritic spines on medium spiny neurons in the nucleus accumbens (Acb) and pyramidal cells in the medial prefrontal cortex (mPFC). To determine if this is associated with the development of psychomotor sensitization, rats were given daily i.p. injections of 15 mg/kg of cocaine (or saline) for 8 days, either in their home cage (which failed to induce significant psychomotor sensitization) or in a distinct and relatively novel test cage (which induced robust psychomotor sensitization). Their brains were obtained 2 weeks after the last injection and processed for Golgi–Cox staining. In the Acb core (AcbC) cocaine treatment increased spine density only in the group that developed psychomotor sensitization (i.e. in the Novel but not Home group), and there was a significant positive correlation between the degree of psychomotor sensitization and spine density. In the Acb shell (AcbS) cocaine increased spine density to the same extent in both groups; i.e. independent of psychomotor sensitization. In the mPFC cocaine increased spine density in both groups, but to a significantly greater extent in the Novel group. Furthermore, when rats were treated at Home with a higher dose of cocaine (30 mg/kg), cocaine now induced psychomotor sensitization in this context, and also increased spine density in the AcbC. Thus, the context in which cocaine is experienced influences its ability to reorganize patterns of synaptic connectivity in the Acb and mPFC, and the induction of psychomotor sensitization is associated with structural plasticity in the AcbC and mPFC, but not the AcbS.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73532/1/j.1460-9568.2004.03612.x.pd

    Deliberating performance targets workshop: Potential paths for emerging PM2.5 and O3 air sensor progress

    Get PDF
    The United States Environmental Protection Agency held an international two-day workshop in June 2018 to deliberate possible performance targets for non-regulatory fine particulate matter (PM2.5) and ozone (O3) air sensors. The need for a workshop arose from the lack of any market-wide manufacturer requirement for documented sensor performance evaluations, the lack of any independent third party or government-based sensor performance certification program, and uncertainty among all users as to the general usability of air sensor data. A multi-sector subject matter expert panel was assembled to facilitate an open discussion on these issues with multiple stakeholders. This summary provides an overview of the workshop purpose, key findings from the deliberations, and considerations for future actions specific to sensors. Important findings concerning PM2.5 and O3 sensors included the lack of consistent performance indicators and statistical metrics as well as highly variable data quality requirements depending on the intended use. While the workshop did not attempt to yield consensus on any topic, a key message was that a number of possible future actions would be beneficial to all stakeholders regarding sensor technologies. These included documentation of best practices, sharing quality assurance results along with sensor data, and the development of a common performance target lexicon, performance targets, and test protocols. Keywords: Low-cost air quality sensors, Performance targets, PM2.5, Ozon

    Distribution maps of cetacean and seabird populations in the North‐East Atlantic

    Get PDF
    1. Distribution maps of cetaceans and seabirds at basin and monthly scales are needed for conservation and marine management. These are usually created from standardized and systematic aerial and vessel surveys, with recorded animal den- sities interpolated across study areas. However, distribution maps at basin and monthly scales have previously not been possible because individual surveys have restricted spatial and temporal coverage. 2. This study develops an alternative approach consisting of: (a) collating diverse survey data to maximize spatial and temporal coverage, (b) using detection func- tions to estimate variation in the surface area covered (km2) among these surveys, standardizing measurements of effort and animal densities, and (c) developing species distribution models (SDM) that overcome issues with heterogeneous and uneven coverage. 3. 2.68 million km of survey data in the North-East Atlantic between 1980 and 2018 were collated and standardized. SDM using Generalized Linear Models and General Estimating Equations in a hurdle approach were developed. Distribution maps were then created for 12 cetacean and 12 seabird species at 10 km and monthly resolution. Qualitative and quantitative assessment indicated good model performance. 4. Synthesis and applications. This study provides the largest ever collation and standardization of diverse survey data for cetaceans and seabirds, and the most comprehensive distribution maps of these taxa in the North-East Atlantic. These distribution maps have numerous applications including the identification of im- portant areas needing protection, and the quantification of overlap between vul- nerable species and anthropogenic activities. This study demonstrates how the analysis of existing and diverse survey data can meet conservation and marine management needs.Versión del editor4,7

    The global atmospheric electrical circuit and climate

    Get PDF
    Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultra-fine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution can affect cloud properties and modify the radiative balance of the atmosphere, through changes communicated globally by the atmospheric electrical circuit. Despite a long history of work in related areas of geophysics, the direct and inverse relationships between the global circuit and global climate remain largely quantitatively unexplored. From reviewing atmospheric electrical measurements made over two centuries and possible paleoclimate proxies, global atmospheric electrical circuit variability should be expected on many timescale

    History of clinical transplantation

    Get PDF
    How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2•72 (95% uncertainty interval [UI] 2•66–2•79) in 2000 to 2•31 (2•17–2•46) in 2019. Global annual livebirths increased from 134•5 million (131•5–137•8) in 2000 to a peak of 139•6 million (133•0–146•9) in 2016. Global livebirths then declined to 135•3 million (127•2–144•1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2•1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27•1% (95% UI 26•4–27•8) of global livebirths. Global life expectancy at birth increased from 67•2 years (95% UI 66•8–67•6) in 2000 to 73•5 years (72•8–74•3) in 2019. The total number of deaths increased from 50•7 million (49•5–51•9) in 2000 to 56•5 million (53•7–59•2) in 2019. Under-5 deaths declined from 9•6 million (9•1–10•3) in 2000 to 5•0 million (4•3–6•0) in 2019. Global population increased by 25•7%, from 6•2 billion (6•0–6•3) in 2000 to 7•7 billion (7•5–8•0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58•6 years (56•1–60•8) in 2000 to 63•5 years (60•8–66•1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation: Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
    corecore