541 research outputs found
Microscopic study of the He2-SF6 trimers
The He2-SF6 trimers, in their different He isotopic combinations, are studied
both in the framework of the correlated Jastrow approach and of the Correlated
Hyperspherical Harmonics expansion method. The energetics and structure of the
He-SF6 dimers are analyzed, and the existence of a characteristic rotational
band in the excitation spectrum is discussed, as well as the isotopic
differences. The binding energies and the spatial properties of the trimers, in
their ground and lowest lying excited states, obtained by the Jastrow ansatz
are in excellent agreement with the results of the converged CHH expansion. The
introduction of the He-He correlation makes all trimers bound by largely
suppressing the short range He-He repulsion.
The structural properties of the trimers are qualitatively explained in terms
of the shape of the interactions, Pauli principle and masses of the
constituents.Comment: 17 pages, 5 figures. Submitted to PR
DT/T beyond linear theory
The major contribution to the anisotropy of the temperature of the Cosmic
Microwave Background (CMB) radiation is believed to come from the interaction
of linear density perturbations with the radiation previous to the decoupling
time. Assuming a standard thermal history for the gas after recombination, only
the gravitational field produced by the linear density perturbations present on
a universe can generate anisotropies at low z (these
anisotropies would manifest on large angular scales). However, secondary
anisotropies are inevitably produced during the nonlinear evolution of matter
at late times even in a universe with a standard thermal history. Two effects
associated to this nonlinear phase can give rise to new anisotropies: the
time-varying gravitational potential of nonlinear structures (Rees-Sciama RS
effect) and the inverse Compton scattering of the microwave photons with hot
electrons in clusters of galaxies (Sunyaev-Zeldovich SZ effect). These two
effects can produce distinct imprints on the CMB temperature anisotropy. We
discuss the amplitude of the anisotropies expected and the relevant angular
scales in different cosmological scenarios. Future sensitive experiments will
be able to probe the CMB anisotropies beyong the first order primary
contribution.Comment: plain tex, 16 pages, 3 figures. Proceedings of the Laredo Advance
School on Astrophysics "The universe at high-z, large-scale structure and the
cosmic microwave background". To be publised by Springer-Verla
An Anglo-Saxon execution cemetery at Walkington Wold, Yorkshire
This paper presents a re-evaluation of a cemetery excavated over
30 years ago at Walkington Wold in east Yorkshire. The cemetery is
characterized by careless burial on diverse alignments, and by the fact that
most of the skeletons did not have associated crania. The cemetery has been
variously described as being the result of an early post-Roman massacre, as
providing evidence for a ‘Celtic’ head cult or as an Anglo-Saxon execution
cemetery. In order to resolve the matter, radiocarbon dates were acquired and
a re-examination of the skeletal remains was undertaken. It was confirmed that
the cemetery was an Anglo-Saxon execution cemetery, the only known example
from northern England, and the site is set into its wider context in the paper
Reionization by active sources and its effects on the cosmic microwave background
We investigate the possible effects of reionization by active sources on the
cosmic microwave background. We concentrate on the sources themselves as the
origin of reionization, rather than early object formation, introducing an
extra period of heating motivated by the active character of the perturbations.
Using reasonable parameters, this leads to four possibilities depending on the
time and duration of the energy input: delayed last scattering, double last
scattering, shifted last scattering and total reionization. We show that these
possibilities are only very weakly constrained by the limits on spectral
distortions from the COBE FIRAS measurements. We illustrate the effects of
these reionization possibilities on the angular power spectrum of temperature
anisotropies and polarization for simple passive isocurvature models and simple
coherent sources, observing the difference between passive and active models.
Finally, we comment on the implications of this work for more realistic active
sources, such as causal white noise and topological defect models. We show for
these models that non-standard ionization histories can shift the peak in the
CMB power to larger angular scales.Comment: 21 pages LaTeX with 11 eps figures; replaced with final version
accepted for publication in Phys. Rev.
Overcoming the Impasse in Modern Economics
This document is the Accepted Manuscript version of the following article: Francesca Gagliardi, and David Gindis, 'Overcoming the Impasse in Modern Economics', Competition and Change, Vol. 15 (4): 336-42, November 2011, doi: 10.1179/102452911X13135903675732. Published by SAGE.Peer reviewe
Search for Rare and Forbidden Dilepton Decays of the D+, Ds, and D0 Charmed Mesons
We report the results of a search for flavor-changing neutral current,
lepton-flavor violating, and lepton-number violating decays of D+, Ds, and D0
mesons (and their antiparticles) into modes containing muons and electrons.
Using data from Fermilab charm hadroproduction experiment E791, we examine the
pi,l,l and K,l,l decay modes of D+ and Ds and the l+l- decay modes of D0. No
evidence for any of these decays is found. Therefore, we present
branching-fraction upper limits at 90% confidence level for the 24 decay modes
examined. Eight of these modes have no previously reported limits, and fourteen
are reported with significant improvements over previously published results.Comment: 12 pages, 3 figures, LaTeX, elsart.cls, epsf.sty, amsmath.sty
Submitted to Physics Letters
Search for CP Violation in Charged D Meson Decays
We report results of a search for CP violation in the singly
Cabibbo-suppressed decays D+ -> K- K+ pi+, phi pi+, K*(892)0 K+, and pi- pi+
pi+ based on data from the charm hadroproduction experiment E791 at Fermilab.
We search for a difference in the D+ and D- decay rates for each of the final
states. No evidence for a difference is seen. The decay rate asymmetry
parameters A(CP), defined as the difference in the D+ and D- decay rates
divided by the sum of the decay rates, are measured to be: A(CP)(K K pi) =
-0.014 +/- 0.029, A(CP)(phi pi) = -0.028 +/- 0.036, A(CP)(K*(892) K) = -0.010
+/- 0.050, and A(CP)(pi pi pi) = -0.017 +/- 0.042.Comment: 13 pages, 5 figures, 1 table; Elsevier LaTe
iNOS activity is critical for the clearance of Burkholderia mallei from infected RAW 264.7 murine macrophages
Burkholderia mallei is a facultative intracellular pathogen that can cause fatal disease in animals and humans. To better understand the role of phagocytic cells in the control of infections caused by this organism, studies were initiated to examine the interactions of B. mallei with RAW 264.7 murine macrophages. Utilizing modified kanamycin-protection assays, B. mallei was shown to survive and replicate in RAW 264.7 cells infected at multiplicities of infection (moi) of ≤ 1. In contrast, the organism was efficiently cleared by the macrophages when infected at an moi of 10. Interestingly, studies demonstrated that the monolayers only produced high levels of TNF-α, IL-6, IL-10, GM-CSF, RANTES and IFN-β when infected at an moi of 10. In addition, nitric oxide assays and inducible nitric oxide synthase (iNOS) immunoblot analyses revealed a strong correlation between iNOS activity and clearance of B. mallei from RAW 264.7 cells. Furthermore, treatment of activated macrophages with the iNOS inhibitor, aminoguanidine, inhibited clearance of B. mallei from infected monolayers. Based upon these results, it appears that moi significantly influence the outcome of interactions between B. mallei and murine macrophages and that iNOS activity is critical for the clearance of B. mallei from activated RAW 264.7 cells
Ultrafast electronic, infrared, and X-ray absorption spectroscopy study of Cu(i) phosphine diimine complexes
The study aims to understand the role of the transient bonding in the interplay between the structural and electronic changes in heteroleptic Cu(I) diimine diphosphine complexes. This is an emerging class of photosensitisers which absorb in the red region of the spectrum, whilst retaining a sufficiently long excited state lifetime. Here, the dynamics of these complexes are explored by transient absorption (TA) and time-resolved infrared (TRIR) spectroscopy, which reveal ultrafast intersystem crossing and structural distortion occurring. Two potential mechanisms affecting excited state decay in these complexes involve a transient formation of a solvent adduct, made possible by the opening up of the Cu coordination centre in the excited state due to structural distortion, and by a transient coordination of the O-atom of the phosphine ligand to the copper center. X-ray absorption studies of the ground electronic state have been conducted as a prerequisite for the upcoming X-ray spectroscopy studies which will directly determine structural dynamics. The potential for these complexes to be used in bimolecular applications is confirmed by a significant yield of singlet oxygen production
- …